Revealing the Parallel Multilingual Learning within Large Language Models
- URL: http://arxiv.org/abs/2403.09073v2
- Date: Tue, 08 Oct 2024 04:03:16 GMT
- Title: Revealing the Parallel Multilingual Learning within Large Language Models
- Authors: Yongyu Mu, Peinan Feng, Zhiquan Cao, Yuzhang Wu, Bei Li, Chenglong Wang, Tong Xiao, Kai Song, Tongran Liu, Chunliang Zhang, Jingbo Zhu,
- Abstract summary: In this study, we reveal an in-context learning capability of multilingual large language models (LLMs)
By translating the input to several languages, we provide Parallel Input in Multiple Languages (PiM) to LLMs, which significantly enhances their comprehension abilities.
- Score: 50.098518799536144
- License:
- Abstract: In this study, we reveal an in-context learning (ICL) capability of multilingual large language models (LLMs): by translating the input to several languages, we provide Parallel Input in Multiple Languages (PiM) to LLMs, which significantly enhances their comprehension abilities. To test this capability, we design extensive experiments encompassing 8 typical datasets, 7 languages and 8 state-of-the-art multilingual LLMs. Experimental results show that (1) incorporating more languages help PiM surpass the conventional ICL further; (2) even combining with the translations that are inferior to baseline performance can also help. Moreover, by examining the activated neurons in LLMs, we discover a counterintuitive but interesting phenomenon. Contrary to the common thought that PiM would activate more neurons than monolingual input to leverage knowledge learned from diverse languages, PiM actually inhibits neurons and promotes more precise neuron activation especially when more languages are added. This phenomenon aligns with the neuroscience insight about synaptic pruning, which removes less used neural connections, strengthens remainders, and then enhances brain intelligence.
Related papers
- One Mind, Many Tongues: A Deep Dive into Language-Agnostic Knowledge Neurons in Large Language Models [19.58983929459173]
Large language models (LLMs) have learned vast amounts of factual knowledge through self-supervised pre-training on large-scale corpora.
LLMs have also demonstrated excellent multilingual capabilities, which can express the learned knowledge in multiple languages.
arXiv Detail & Related papers (2024-11-26T13:03:49Z) - Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
Large language models (LLMs) have demonstrated remarkable performance, particularly in multilingual contexts.
Recent studies suggest that LLMs can transfer skills learned in one language to others, but the internal mechanisms behind this ability remain unclear.
This paper provides insights into the internal workings of LLMs, offering a foundation for future improvements in their cross-lingual capabilities.
arXiv Detail & Related papers (2024-10-15T15:49:15Z) - Multilingual Knowledge Editing with Language-Agnostic Factual Neurons [98.73585104789217]
We investigate how large language models (LLMs) represent multilingual factual knowledge.
We find that the same factual knowledge in different languages generally activates a shared set of neurons, which we call language-agnostic factual neurons.
Inspired by this finding, we propose a new MKE method by locating and modifying Language-Agnostic Factual Neurons (LAFN) to simultaneously edit multilingual knowledge.
arXiv Detail & Related papers (2024-06-24T08:06:56Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
We aim to fill the research gap by examining how neuron activation is shared across tasks and languages.
We classify neurons into four distinct categories based on their responses to a specific input across different languages.
Our analysis reveals the following insights: (i) the patterns of neuron sharing are significantly affected by the characteristics of tasks and examples; (ii) neuron sharing does not fully correspond with language similarity; (iii) shared neurons play a vital role in generating responses, especially those shared across all languages.
arXiv Detail & Related papers (2024-06-13T16:04:11Z) - How do Large Language Models Handle Multilingualism? [81.15060972112563]
This study explores how large language models (LLMs) handle multilingualism.
LLMs initially understand the query, converting multilingual inputs into English for task-solving.
In the intermediate layers, they employ English for thinking and incorporate multilingual knowledge with self-attention and feed-forward structures.
arXiv Detail & Related papers (2024-02-29T02:55:26Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
We conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar.
We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe.
arXiv Detail & Related papers (2022-05-04T12:22:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.