Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue using autofluorescence microscopy and deep learning
- URL: http://arxiv.org/abs/2403.09100v1
- Date: Thu, 14 Mar 2024 04:48:06 GMT
- Title: Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue using autofluorescence microscopy and deep learning
- Authors: Xilin Yang, Bijie Bai, Yijie Zhang, Musa Aydin, Sahan Yoruc Selcuk, Zhen Guo, Gregory A. Fishbein, Karine Atlan, William Dean Wallace, Nir Pillar, Aydogan Ozcan,
- Abstract summary: Congo red stain is the gold standard chemical stain for the visualization of amyloid deposits in tissue sections.
A single trained neural network can transform autofluorescence images of label-free tissue sections into brightfield and polarized light microscopy equivalent images.
- Score: 4.074521061733491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systemic amyloidosis is a group of diseases characterized by the deposition of misfolded proteins in various organs and tissues, leading to progressive organ dysfunction and failure. Congo red stain is the gold standard chemical stain for the visualization of amyloid deposits in tissue sections, as it forms complexes with the misfolded proteins and shows a birefringence pattern under polarized light microscopy. However, Congo red staining is tedious and costly to perform, and prone to false diagnoses due to variations in the amount of amyloid, staining quality and expert interpretation through manual examination of tissue under a polarization microscope. Here, we report the first demonstration of virtual birefringence imaging and virtual Congo red staining of label-free human tissue to show that a single trained neural network can rapidly transform autofluorescence images of label-free tissue sections into brightfield and polarized light microscopy equivalent images, matching the histochemically stained versions of the same samples. We demonstrate the efficacy of our method with blind testing and pathologist evaluations on cardiac tissue where the virtually stained images agreed well with the histochemically stained ground truth images. Our virtually stained polarization and brightfield images highlight amyloid birefringence patterns in a consistent, reproducible manner while mitigating diagnostic challenges due to variations in the quality of chemical staining and manual imaging processes as part of the clinical workflow.
Related papers
- Single color virtual H&E staining with In-and-Out Net [0.8271394038014485]
This paper introduces a novel network, In-and-Out Net, specifically designed for virtual staining tasks.
Based on Generative Adversarial Networks (GAN), our model efficiently transforms Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin stained images.
arXiv Detail & Related papers (2024-05-22T01:17:27Z) - Autonomous Quality and Hallucination Assessment for Virtual Tissue Staining and Digital Pathology [0.11728348229595655]
We present an autonomous quality and hallucination assessment method (termed AQuA) for virtual tissue staining.
AQuA achieves 99.8% accuracy when detecting acceptable and unacceptable virtually stained tissue images.
arXiv Detail & Related papers (2024-04-29T06:32:28Z) - Automated Whole Slide Imaging for Label-Free Histology using Photon
Absorption Remote Sensing Microscopy [0.0]
Current staining and advanced labeling methods are often destructive and mutually incompatible.
We present an alternative label-free histology platform using the first transmission-mode Photon Remote Sensing microscope.
arXiv Detail & Related papers (2023-04-26T12:36:19Z) - Digital staining in optical microscopy using deep learning -- a review [47.86254766044832]
Digital staining has emerged as a promising concept to use modern deep learning for the translation from optical contrast to established biochemical contrast of actual stainings.
We provide an in-depth analysis of the current state-of-the-art in this field, suggest methods of good practice, identify pitfalls and challenges and postulate promising advances towards potential future implementations and applications.
arXiv Detail & Related papers (2023-03-14T15:23:48Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
The quality of retinal images is often clinically unsatisfactory due to eye lesions and imperfect imaging process.
One of the most challenging quality degradation issues in retinal images is non-uniform illumination.
We propose a non-uniform illumination removal network for retinal image, called NuI-Go.
arXiv Detail & Related papers (2020-08-07T04:31:33Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Pix2Pix-based Stain-to-Stain Translation: A Solution for Robust Stain
Normalization in Histopathology Images Analysis [5.33024001730262]
Stain-to-Stain Translation (STST) is used to stain normalization for Hematoxylin and Eosin stained histopathology images.
We perform the process of translation based on the pix2pix framework, which uses the conditional generator adversarial networks (cGANs)
arXiv Detail & Related papers (2020-02-03T11:19:01Z) - Digital synthesis of histological stains using micro-structured and
multiplexed virtual staining of label-free tissue [2.446672595462589]
We present a new deep learning-based framework which generates virtually-stained images using label-free tissue.
We trained and blindly tested this virtual-staining network using unlabeled kidney tissue sections.
arXiv Detail & Related papers (2020-01-20T22:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.