Alternant Hydrocarbon Diradicals as Optically Addressable Molecular Qubits
- URL: http://arxiv.org/abs/2403.09102v2
- Date: Mon, 18 Mar 2024 00:53:05 GMT
- Title: Alternant Hydrocarbon Diradicals as Optically Addressable Molecular Qubits
- Authors: Yong Rui Poh, Dmitry Morozov, Nathanael P. Kazmierczak, Ryan G. Hadt, Gerrit Groenhof, Joel Yuen-Zhou,
- Abstract summary: High-spin molecules allow for bottom-up qubit design and are promising platforms for magnetic sensing and quantum information science.
We use alternancy symmetry to selectively minimise radical-radical interactions in the ground state, generating $pi$-systems with high diradical characters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-spin molecules allow for bottom-up qubit design and are promising platforms for magnetic sensing and quantum information science. Optical addressability of molecular electron spins has also been proposed in first-row transition metal complexes via optically-detected magnetic resonance (ODMR) mechanisms analogous to the diamond-NV colour centre. However, significantly less progress has been made on the front of metal-free molecules, which can deliver lower costs and milder environmental impacts. At present, most luminescent open-shell organic molecules are $\pi$-diradicals, but such systems often suffer from poor ground-state open-shell characters necessary to realise a stable ground-state molecular qubit. In this work, we use alternancy symmetry to selectively minimise radical-radical interactions in the ground state, generating $\pi$-systems with high diradical characters. We call them m-dimers, referencing the need to covalently link two benzylic radicals at their meta carbon atoms for the desired symmetry. Through a detailed electronic structure analysis, we find that the excited states of alternant hydrocarbon m-diradicals contain important symmetries that can be used to construct ODMR mechanisms leading to ground-state spin polarisation. The molecular parameters are set in the context of a tris(2,4,6-trichlorophenyl)methyl (TTM) radical dimer covalently tethered at the meta position, demonstrating the feasibility of alternant m-diradicals as molecular colour centres.
Related papers
- Enhancing the ODMR Signal of Organic Molecular Qubits [0.0]
In quantum information science and sensing, electron spins are often purified into a specific polarisation through an optical-spin interface.
Diamond-NV centres and transition metals are both excellent platforms for these so-called colour centres.
We propose to improve the optically-detected magnetic resonance signal by moving singlet populations back into the triplet $M_S=pm1$ sublevel.
arXiv Detail & Related papers (2024-09-28T05:48:36Z) - Floquet-engineered chiral-induced spin selectivity [0.0]
We show that CISS can be observed in achiral systems driven by an external circularly polarized laser field in the framework of Floquet engineering.
To obtain a wider range of energies for large spin polarization, a combination of chiral molecules and light-matter interactions is considered.
arXiv Detail & Related papers (2023-02-20T07:06:17Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Chiral cavity induced spin selectivity [0.0]
Chiral-induced spin selectivity (CISS) is a phenomenon in which electron spins are polarized as they are transported through chiral molecules.
We show that spin selectivity can be realized in achiral materials by coupling electrons to a single mode of a chiral optical cavity.
arXiv Detail & Related papers (2022-09-25T07:25:23Z) - Interplay of Structural Chirality, Electron Spin and Topological Orbital
in Chiral Molecular Spin Valves [0.0]
Chirality has been a property of central importance in chemistry and biology for more than a century, and is now taking on increasing relevance in condensed matter physics.
electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids.
This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications.
arXiv Detail & Related papers (2022-09-16T18:05:29Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.