Enhancing the ODMR Signal of Organic Molecular Qubits
- URL: http://arxiv.org/abs/2409.19249v3
- Date: Thu, 21 Nov 2024 00:23:20 GMT
- Title: Enhancing the ODMR Signal of Organic Molecular Qubits
- Authors: Yong Rui Poh, Joel Yuen-Zhou,
- Abstract summary: In quantum information science and sensing, electron spins are often purified into a specific polarisation through an optical-spin interface.
Diamond-NV centres and transition metals are both excellent platforms for these so-called colour centres.
We propose to improve the optically-detected magnetic resonance signal by moving singlet populations back into the triplet $M_S=pm1$ sublevel.
- Score: 0.0
- License:
- Abstract: In quantum information science and sensing, electron spins are often purified into a specific polarisation through an optical-spin interface, a process known as optically-detected magnetic resonance (ODMR). Diamond-NV centres and transition metals are both excellent platforms for these so-called colour centres, while metal-free molecular analogues are also gaining popularity for their extended polarisation lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin $\pi$-diradicals, we proposed to spin-polarise by shelving triplet $M_{S}=\pm1$ populations as singlets. This was recently verified by experiments albeit with low ODMR contrasts of $<1\%$ at temperatures above 5 K. In this work, we propose to improve the ODMR signal by moving singlet populations back into the triplet $M_{S}=0$ sublevel, designing a true carbon-based molecular analogue to the NV centre. Our proposal is based upon transition-orbital and group-theoretical analyses of beyond-nearest-neighbour spin-orbit couplings, which are further confirmed by ab initio calculations of a realistic trityl-based radical dimer. Microkinetic analyses point towards high ODMR contrasts of around $30\%$ under experimentally-feasible conditions, a stark improvement from previous works. Finally, in our quest towards ground-state optically-addressable molecular spin qubits, we exemplify how our symmetry-based design avoids Zeeman-induced singlet-triplet mixings, setting the scene for realising electron spin qubit gates.
Related papers
- A fluorescent-protein spin qubit [4.479457641989854]
We realize an optically-addressable spin qubit in the Enhanced Yellow Fluorescent Protein (EYFP)
A near-infrared laser pulse allows for triggered readout of the triplet state with up to 44% spin contrast.
We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment.
arXiv Detail & Related papers (2024-11-25T19:00:00Z) - Alternant Hydrocarbon Diradicals as Optically Addressable Molecular Qubits [0.0]
High-spin molecules allow for bottom-up qubit design and are promising platforms for magnetic sensing and quantum information science.
We use alternancy symmetry to selectively minimise radical-radical interactions in the ground state, generating $pi$-systems with high diradical characters.
arXiv Detail & Related papers (2024-03-14T04:51:17Z) - Analysis of spin-squeezing generation in cavity-coupled atomic ensembles with continuous measurements [0.0]
We show that one can achieve significant spin squeezing, favorably scaling with the number of atoms $N$.
We discuss the relevance of this spin-squeezing protocol to state-of-the-art optical clocks.
arXiv Detail & Related papers (2023-11-27T11:19:15Z) - Semi-Empirical Haken-Strobl Model for Molecular Spin Qubits [0.0]
Recent measurements of solid-state molecular spin qubits have stimulated the development of quantum mechanical models for predicting intrinsic spin qubit timescales.
We develop an alternative semi-empirical approach to construct Redfield quantum master equations for molecular spin qubits using a Haken-Strobl model for a central spin with a fluctuating local magnetic field.
arXiv Detail & Related papers (2023-06-23T21:27:02Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Decoupling of Spin Decoherence Paths near Zero Magnetic Field [0.0]
We demonstrate a method to quantify and manipulate nuclear spin decoherence mechanisms that are active in zero to ultralow magnetic fields.
The method should broaden the spectrum of hyperpolarized biomedical contrast-agent compounds and hyperpolarization procedures that are used near zero field.
arXiv Detail & Related papers (2021-12-16T00:08:08Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.