Optimal Top-Two Method for Best Arm Identification and Fluid Analysis
- URL: http://arxiv.org/abs/2403.09123v1
- Date: Thu, 14 Mar 2024 06:14:07 GMT
- Title: Optimal Top-Two Method for Best Arm Identification and Fluid Analysis
- Authors: Agniv Bandyopadhyay, Sandeep Juneja, Shubhada Agrawal,
- Abstract summary: We propose an optimal top-2 type algorithm for the best arm identification problem.
We show that the proposed algorithm is optimal as $delta rightarrow 0$.
- Score: 15.353009236788262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Top-$2$ methods have become popular in solving the best arm identification (BAI) problem. The best arm, or the arm with the largest mean amongst finitely many, is identified through an algorithm that at any sequential step independently pulls the empirical best arm, with a fixed probability $\beta$, and pulls the best challenger arm otherwise. The probability of incorrect selection is guaranteed to lie below a specified $\delta >0$. Information theoretic lower bounds on sample complexity are well known for BAI problem and are matched asymptotically as $\delta \rightarrow 0$ by computationally demanding plug-in methods. The above top 2 algorithm for any $\beta \in (0,1)$ has sample complexity within a constant of the lower bound. However, determining the optimal $\beta$ that matches the lower bound has proven difficult. In this paper, we address this and propose an optimal top-2 type algorithm. We consider a function of allocations anchored at a threshold. If it exceeds the threshold then the algorithm samples the empirical best arm. Otherwise, it samples the challenger arm. We show that the proposed algorithm is optimal as $\delta \rightarrow 0$. Our analysis relies on identifying a limiting fluid dynamics of allocations that satisfy a series of ordinary differential equations pasted together and that describe the asymptotic path followed by our algorithm. We rely on the implicit function theorem to show existence and uniqueness of these fluid ode's and to show that the proposed algorithm remains close to the ode solution.
Related papers
- Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.
We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.
Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Optimal Batched Best Arm Identification [31.794242669480106]
We study the batched best arm identification (BBAI) problem, where the learner's goal is to identify the best arm while switching the policy as less as possible.
In particular, we aim to find the best arm with probability $1-delta$ for some small constant $delta>0$.
We propose the three-batch best arm identification (Tri-BBAI) and the almost optimal batched best arm identification (Opt-BBAI) algorithm.
arXiv Detail & Related papers (2023-10-21T22:55:50Z) - On the Sample Complexity of Representation Learning in Multi-task
Bandits with Global and Local structure [77.60508571062958]
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems.
Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor)
We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(Glog(delta_G)+ Xlog(delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors.
arXiv Detail & Related papers (2022-11-28T08:40:12Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Globally Optimal Algorithms for Fixed-Budget Best Arm Identification [16.500749121196986]
We characterize the optimal rate as a result of global optimization over all possible parameters.
We show that this rate is indeed achievable by introducing a conceptual algorithm called delayed optimal tracking (DOT)
arXiv Detail & Related papers (2022-06-09T17:42:19Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - An Optimal Elimination Algorithm for Learning a Best Arm [37.18327505953403]
We consider the classic problem of $(epsilon,delta)$-PAC learning a best arm.
We propose a new approach for $(epsilon,delta)$-PAC learning a best arm.
arXiv Detail & Related papers (2020-06-20T20:21:33Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.