論文の概要: Dial-insight: Fine-tuning Large Language Models with High-Quality Domain-Specific Data Preventing Capability Collapse
- arxiv url: http://arxiv.org/abs/2403.09167v1
- Date: Thu, 14 Mar 2024 08:27:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 21:26:58.544064
- Title: Dial-insight: Fine-tuning Large Language Models with High-Quality Domain-Specific Data Preventing Capability Collapse
- Title(参考訳): Dial-insight:高品質ドメイン特化データを用いた微調整型大規模言語モデル
- Authors: Jianwei Sun, Chaoyang Mei, Linlin Wei, Kaiyu Zheng, Na Liu, Ming Cui, Tianyi Li,
- Abstract要約: 高品質なデータを得るために設計された生産プロンプトを構築するための2段階のアプローチを提案する。
この方法は、幅広いタスクを包含し、多種多様な表現を示す多様なプロンプトの生成を含む。
生成したラベルデータの整合性を確保するため,コスト効率,多次元品質評価フレームワークを導入する。
- 参考スコア(独自算出の注目度): 4.98050508891467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficacy of large language models (LLMs) is heavily dependent on the quality of the underlying data, particularly within specialized domains. A common challenge when fine-tuning LLMs for domain-specific applications is the potential degradation of the model's generalization capabilities. To address these issues, we propose a two-stage approach for the construction of production prompts designed to yield high-quality data. This method involves the generation of a diverse array of prompts that encompass a broad spectrum of tasks and exhibit a rich variety of expressions. Furthermore, we introduce a cost-effective, multi-dimensional quality assessment framework to ensure the integrity of the generated labeling data. Utilizing a dataset comprised of service provider and customer interactions from the real estate sector, we demonstrate a positive correlation between data quality and model performance. Notably, our findings indicate that the domain-specific proficiency of general LLMs can be enhanced through fine-tuning with data produced via our proposed method, without compromising their overall generalization abilities, even when exclusively domain-specific data is employed for fine-tuning.
- Abstract(参考訳): 大規模言語モデル(LLM)の有効性は、基礎となるデータの品質に大きく依存している。
ドメイン固有のアプリケーションのための微調整 LLM の一般的な課題は、モデルの一般化能力の潜在的な劣化である。
これらの課題に対処するため,高品質なデータを得るために設計された生産プロンプト構築のための2段階のアプローチを提案する。
この方法は、幅広いタスクを包含し、多種多様な表現を示す多様なプロンプトの生成を含む。
さらに,生成したラベルデータの整合性を確保するため,コスト効率・多次元品質評価フレームワークを導入する。
サービスプロバイダと不動産セクターからの顧客インタラクションからなるデータセットを用いて、データ品質とモデルパフォーマンスの正の相関を実証する。
特に,本手法を用いて作成したデータを用いて,ドメイン固有データのみを微調整に使用しても,全体的な一般化能力を損なうことなく,汎用LLMのドメイン固有習熟度を向上させることができることを示す。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Latent Feature Mining for Predictive Model Enhancement with Large Language Models [2.6334346517416876]
本稿では,テキストからテキストへの命題論理的推論として潜在特徴抽出を定式化するための効果的なアプローチを提案する。
本稿では,大規模言語モデル (LLM) を利用した潜在機能付き観測機能拡張フレームワークであるFLAMEを提案する。
この枠組みを刑事司法制度と医療領域の2つのケーススタディで検証する。
論文 参考訳(メタデータ) (2024-10-06T03:51:32Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
性能ギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - A New Pipeline For Generating Instruction Dataset via RAG and Self Fine-Tuning [0.0]
本研究では,特定のドメインを微調整するための高品質な命令データセットを構築するパイプラインを提案する。
ドメイン固有の文書を取り込み、パイプラインは関連性のある適切な命令を生成する。
ケーススタディでは、専門知識と患者情報の繊細な取り扱いを必要とする領域である精神医学の領域にこのアプローチを適用した。
論文 参考訳(メタデータ) (2024-08-12T03:52:11Z) - Multi-Agent Planning Using Visual Language Models [2.2369578015657954]
大規模言語モデル(LLM)とビジュアル言語モデル(VLM)は、様々なドメインやタスクにわたるパフォーマンスとアプリケーションの改善により、関心を集めている。
LLMとVLMは、特に問題領域の深い理解が必要な場合、誤った結果をもたらす。
本稿では,特定のデータ構造を入力として必要とせずに動作可能なマルチエージェント型タスクプランニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-08-10T08:10:17Z) - Simplifying Multimodality: Unimodal Approach to Multimodal Challenges in Radiology with General-Domain Large Language Model [3.012719451477384]
MID-Mは,汎用言語モデル(LLM)のコンテキスト内学習機能を利用して,画像記述によるマルチモーダルデータの処理を行う新しいフレームワークである。
MID-Mは、タスク固有の微調整 LMM や他の汎用ドメインと同等または優れた性能を達成し、ドメイン固有の訓練やマルチモーダルデータによる事前トレーニングは行わない。
データ品質問題に対するMID-Mの堅牢性は、実世界の医療ドメインアプリケーションにおいて実用性を示している。
論文 参考訳(メタデータ) (2024-04-29T13:23:33Z) - Efficiently Assemble Normalization Layers and Regularization for Federated Domain Generalization [1.1534313664323637]
ドメインシフト(Domain shift)は、マシンラーニングにおいて、目に見えないドメインでテストした場合に、モデルのパフォーマンス低下に悩まされるという深刻な問題である。
FedDGは、プライバシー保護の方法で協調的なクライアントを使用してグローバルモデルをトレーニングしようと試みている。
本稿では, 誘導正規化方式に依存するFedDGの新しいアーキテクチャ手法,すなわちgPerXANを紹介する。
論文 参考訳(メタデータ) (2024-03-22T20:22:08Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
大規模言語モデル(LLM)に固有の内在的一般化能力に微調整が及ぼす影響について検討する。
本研究の主目的は、生成タスクと分類タスクを微調整したモデルが、異なる領域やタスクに一般化する際に異なる振る舞いを示すことである。
生成タスクの微調整中にコンテキスト内学習戦略を統合することで、モデルの一般化能力を高めることができる。
論文 参考訳(メタデータ) (2024-03-14T08:18:59Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。