SHAN: Object-Level Privacy Detection via Inference on Scene Heterogeneous Graph
- URL: http://arxiv.org/abs/2403.09172v2
- Date: Fri, 21 Jun 2024 03:11:54 GMT
- Title: SHAN: Object-Level Privacy Detection via Inference on Scene Heterogeneous Graph
- Authors: Zhuohang Jiang, Bingkui Tong, Xia Du, Ahmed Alhammadi, Jizhe Zhou,
- Abstract summary: Privacy object detection aims to accurately locate private objects in images.
Existing methods suffer from serious deficiencies in accuracy, generalization, and interpretability.
We propose SHAN, Scene Heterogeneous graph Attention Network, a model constructs a scene heterogeneous graph from an image.
- Score: 5.050631286347773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of social platforms, protecting privacy has become an important issue. Privacy object detection aims to accurately locate private objects in images. It is the foundation of safeguarding individuals' privacy rights and ensuring responsible data handling practices in the digital age. Since privacy of object is not shift-invariant, the essence of the privacy object detection task is inferring object privacy based on scene information. However, privacy object detection has long been studied as a subproblem of common object detection tasks. Therefore, existing methods suffer from serious deficiencies in accuracy, generalization, and interpretability. Moreover, creating large-scale privacy datasets is difficult due to legal constraints and existing privacy datasets lack label granularity. The granularity of existing privacy detection methods remains limited to the image level. To address the above two issues, we introduce two benchmark datasets for object-level privacy detection and propose SHAN, Scene Heterogeneous graph Attention Network, a model constructs a scene heterogeneous graph from an image and utilizes self-attention mechanisms for scene inference to obtain object privacy. Through experiments, we demonstrated that SHAN performs excellently in privacy object detection tasks, with all metrics surpassing those of the baseline model.
Related papers
- Explaining models relating objects and privacy [33.78605193864911]
We evaluate privacy models that use objects extracted from an image to determine why the image is predicted as private.
We show that the presence of the person category and its cardinality is the main factor for the privacy decision.
arXiv Detail & Related papers (2024-05-02T18:06:48Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Fairly Private: Investigating The Fairness of Visual Privacy
Preservation Algorithms [1.5293427903448025]
This paper investigates the fairness of commonly used visual privacy preservation algorithms.
Experiments on the PubFig dataset clearly show that the privacy protection provided is unequal across groups.
arXiv Detail & Related papers (2023-01-12T13:40:38Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain.
Our method performs very well with several classical face recognition test sets.
arXiv Detail & Related papers (2022-07-15T07:15:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - Privacy-preserving Object Detection [52.77024349608834]
We show that for object detection on COCO, both anonymizing the dataset by blurring faces, as well as swapping faces in a balanced manner along the gender and skin tone dimension, can retain object detection performances while preserving privacy and partially balancing bias.
arXiv Detail & Related papers (2021-03-11T10:34:54Z) - SocialGuard: An Adversarial Example Based Privacy-Preserving Technique
for Social Images [6.321399006735314]
We propose a novel adversarial example based privacy-preserving technique for social images against object detectors based privacy stealing.
We use two metrics, privacy-preserving success rate and privacy leakage rate, to evaluate the effectiveness of the proposed method.
The privacy-preserving success rates of the proposed method on MS-COCO and PASCAL VOC 2007 datasets are high up to 96.1% and 99.3%, respectively.
arXiv Detail & Related papers (2020-11-27T05:12:47Z) - Subverting Privacy-Preserving GANs: Hiding Secrets in Sanitized Images [13.690485523871855]
State-of-the-art approaches use privacy-preserving generative adversarial networks (PP-GANs) to enable reliable facial expression recognition without leaking users' identity.
We show that it is possible to hide the sensitive identification data in the sanitized output images of such PP-GANs for later extraction.
arXiv Detail & Related papers (2020-09-19T19:02:17Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
We study techniques that allow individuals to limit the private information leaked in visual data.
We tackle this problem in a novel image obfuscation framework.
We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2$times$ (or up to 0.85 bits) over the non-obfuscated counterparts.
arXiv Detail & Related papers (2020-05-20T19:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.