Outlier Robust Multivariate Polynomial Regression
- URL: http://arxiv.org/abs/2403.09465v1
- Date: Thu, 14 Mar 2024 15:04:45 GMT
- Title: Outlier Robust Multivariate Polynomial Regression
- Authors: Vipul Arora, Arnab Bhattacharyya, Mathews Boban, Venkatesan Guruswami, Esty Kelman,
- Abstract summary: We are given a set of random samples $(mathbfx_i,y_i) in [-1,1]n times mathbbR$ that are noisy versions of $(mathbfx_i,p(mathbfx_i)$.
The goal is to output a $hatp$, within an $ell_in$-distance of at most $O(sigma)$ from $p$.
- Score: 27.03423421704806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of robust multivariate polynomial regression: let $p\colon\mathbb{R}^n\to\mathbb{R}$ be an unknown $n$-variate polynomial of degree at most $d$ in each variable. We are given as input a set of random samples $(\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R}$ that are noisy versions of $(\mathbf{x}_i,p(\mathbf{x}_i))$. More precisely, each $\mathbf{x}_i$ is sampled independently from some distribution $\chi$ on $[-1,1]^n$, and for each $i$ independently, $y_i$ is arbitrary (i.e., an outlier) with probability at most $\rho < 1/2$, and otherwise satisfies $|y_i-p(\mathbf{x}_i)|\leq\sigma$. The goal is to output a polynomial $\hat{p}$, of degree at most $d$ in each variable, within an $\ell_\infty$-distance of at most $O(\sigma)$ from $p$. Kane, Karmalkar, and Price [FOCS'17] solved this problem for $n=1$. We generalize their results to the $n$-variate setting, showing an algorithm that achieves a sample complexity of $O_n(d^n\log d)$, where the hidden constant depends on $n$, if $\chi$ is the $n$-dimensional Chebyshev distribution. The sample complexity is $O_n(d^{2n}\log d)$, if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most $O(\sigma)$, and the run-time depends on $\log(1/\sigma)$. In the setting where each $\mathbf{x}_i$ and $y_i$ are known up to $N$ bits of precision, the run-time's dependence on $N$ is linear. We also show that our sample complexities are optimal in terms of $d^n$. Furthermore, we show that it is possible to have the run-time be independent of $1/\sigma$, at the cost of a higher sample complexity.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - $\ell_p$-Regression in the Arbitrary Partition Model of Communication [59.89387020011663]
We consider the randomized communication complexity of the distributed $ell_p$-regression problem in the coordinator model.
For $p = 2$, i.e., least squares regression, we give the first optimal bound of $tildeTheta(sd2 + sd/epsilon)$ bits.
For $p in (1,2)$,we obtain an $tildeO(sd2/epsilon + sd/mathrmpoly(epsilon)$ upper bound.
arXiv Detail & Related papers (2023-07-11T08:51:53Z) - Faster Sampling from Log-Concave Distributions over Polytopes via a
Soft-Threshold Dikin Walk [28.431572772564518]
We consider the problem of sampling from a $d$-dimensional log-concave distribution $pi(theta) propto e-f(theta)$ constrained to a polytope $K$ defined by $m$ inequalities.
Our main result is a "soft-warm'' variant of the Dikin walk Markov chain that requires at most $O((md + d L2 R2) times MDomega-1) log(fracwdelta)$ arithmetic operations to sample from $pi$
arXiv Detail & Related papers (2022-06-19T11:33:07Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - The Sparse Hausdorff Moment Problem, with Application to Topic Models [5.151973524974052]
We give an algorithm for identifying a $k$-mixture using samples of $m=2k$ iid binary random variables.
It suffices to know the moments to additive accuracy $w_mincdotzetaO(k)$.
arXiv Detail & Related papers (2020-07-16T04:23:57Z) - Robust Gaussian Covariance Estimation in Nearly-Matrix Multiplication
Time [14.990725929840892]
We show an algorithm that runs in time $widetildeO(T(N, d) log kappa / mathrmpoly (varepsilon))$, where $T(N, d)$ is the time it takes to multiply a $d times N$ matrix by its transpose.
Our runtime matches that of the fastest algorithm for covariance estimation without outliers, up to poly-logarithmic factors.
arXiv Detail & Related papers (2020-06-23T20:21:27Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - Learning Mixtures of Spherical Gaussians via Fourier Analysis [0.5381004207943596]
We find that a bound on the sample and computational complexity was previously unknown when $omega(1) leq d leq O(log k)$.
These authors also show that the sample of complexity of a random mixture of gaussians in a ball of radius $d$ in $d$ dimensions, when $d$ is $Theta(sqrtd)$ in $d$ dimensions, when $d$ is at least $poly(k, frac1delta)$.
arXiv Detail & Related papers (2020-04-13T08:06:29Z) - Sample Amplification: Increasing Dataset Size even when Learning is Impossible [15.864702679819544]
Given data drawn from an unknown distribution, $D$, to what extent is it possible to amplify'' this dataset and output an even larger set of samples that appear to have been drawn from $D$?
We formalize this question as follows: an $left(n, n + Theta(fracnsqrtk)right)$ amplifier exists, even though learning the distribution to small constant total variation distance requires $Theta(d)$ samples.
arXiv Detail & Related papers (2019-04-26T21:42:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.