On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study
- URL: http://arxiv.org/abs/2403.09509v1
- Date: Thu, 14 Mar 2024 15:56:02 GMT
- Title: On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study
- Authors: Ali Nouri, Christian Berger, Fredrik Törner,
- Abstract summary: System-Theoretic Process Analysis (STPA) is a novel method applied in safety-related fields like defense and aerospace.
STPA assumes prerequisites that are not fully valid in the automotive system engineering with distributed system development and multi-abstraction design levels.
This can be seen as a maintainability challenge in continuous development and deployment.
- Score: 0.7851536646859475
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Safety analysis is used to identify hazards and build knowledge during the design phase of safety-relevant functions. This is especially true for complex AI-enabled and software intensive systems such as Autonomous Drive (AD). System-Theoretic Process Analysis (STPA) is a novel method applied in safety-related fields like defense and aerospace, which is also becoming popular in the automotive industry. However, STPA assumes prerequisites that are not fully valid in the automotive system engineering with distributed system development and multi-abstraction design levels. This would inhibit software developers from using STPA to analyze their software as part of a bigger system, resulting in a lack of traceability. This can be seen as a maintainability challenge in continuous development and deployment (DevOps). In this paper, STPA's different guidelines for the automotive industry, e.g. J31887/ISO21448/STPA handbook, are firstly compared to assess their applicability to the distributed development of complex AI-enabled systems like AD. Further, an approach to overcome the challenges of using STPA in a multi-level design context is proposed. By conducting an interview study with automotive industry experts for the development of AD, the challenges are validated and the effectiveness of the proposed approach is evaluated.
Related papers
- From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems [2.226040060318401]
We translate System Theoretic Process Analysis (STPA) for analyzing AI operation and development processes.
We focus on systems that rely on machine learning algorithms and conductedA on three case studies.
We find that key concepts and steps of conducting anA readily apply, albeit with a few adaptations tailored for AI systems.
arXiv Detail & Related papers (2024-10-29T20:43:18Z) - S-RAF: A Simulation-Based Robustness Assessment Framework for Responsible Autonomous Driving [6.559634434583204]
We introduce Simulation-Based Robustness Assessment Framework (S-RAF) for autonomous driving.
By quantifying robustness, S-RAF aids developers and stakeholders in building safe and responsible driving agents.
S-RAF offers significant advantages, such as reduced testing costs, and the ability to explore edge cases that may be unsafe to test in the real world.
arXiv Detail & Related papers (2024-08-16T07:37:05Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications [1.6495054381576084]
This paper explores the role and challenges of Artificial Intelligence (AI) algorithms in autonomous driving systems.
A primary concern relates to the ability (and necessity) of AI models to generalize beyond their initial training data.
This paper investigates the risk associated with overconfident AI models in safety-critical applications like autonomous driving.
arXiv Detail & Related papers (2024-02-13T04:15:26Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
Testing, verification and validation AD/ADAS safety-critical applications remain as one the main challenges.
We explain the simulation-based development platform that is designed to verify and validate safety-critical learning-enabled systems.
arXiv Detail & Related papers (2023-09-28T09:00:31Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
We introduce the design of this platform and discuss an early evaluation in terms of a demonstrator for AI-enabled visual quality inspection.
This is complemented by insights and lessons learned during this early evaluation activity.
arXiv Detail & Related papers (2022-07-10T18:51:12Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
We propose a framework that integrates autonomous control, explainable AI (XAI), and regulatory compliance.
We describe relevant XAI approaches that can help achieve the goals of the framework.
arXiv Detail & Related papers (2021-11-20T05:06:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.