Logits of API-Protected LLMs Leak Proprietary Information
- URL: http://arxiv.org/abs/2403.09539v3
- Date: Fri, 08 Nov 2024 18:56:41 GMT
- Title: Logits of API-Protected LLMs Leak Proprietary Information
- Authors: Matthew Finlayson, Xiang Ren, Swabha Swayamdipta,
- Abstract summary: Large language model (LLM) providers often hide the architectural details and parameters of their proprietary models by restricting public access to a limited API.
We show that it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries.
- Score: 46.014638838911566
- License:
- Abstract: Large language model (LLM) providers often hide the architectural details and parameters of their proprietary models by restricting public access to a limited API. In this work we show that, with only a conservative assumption about the model architecture, it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries (e.g., costing under $1000 USD for OpenAI's gpt-3.5-turbo). Our findings are centered on one key observation: most modern LLMs suffer from a softmax bottleneck, which restricts the model outputs to a linear subspace of the full output space. We exploit this fact to unlock several capabilities, including (but not limited to) obtaining cheap full-vocabulary outputs, auditing for specific types of model updates, identifying the source LLM given a single full LLM output, and even efficiently discovering the LLM's hidden size. Our empirical investigations show the effectiveness of our methods, which allow us to estimate the embedding size of OpenAI's gpt-3.5-turbo to be about 4096. Lastly, we discuss ways that LLM providers can guard against these attacks, as well as how these capabilities can be viewed as a feature (rather than a bug) by allowing for greater transparency and accountability.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Verifiable Format Control for Large Language Model Generations [24.789801375314664]
Large Language Models (LLMs) have demonstrated satisfying general instruction following ability.
Small LLMs with about 7B parameters struggle fine-grained format following (e.g., verifiable format)
arXiv Detail & Related papers (2025-02-06T20:57:36Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models [35.77228114378362]
Large Language Models (LLMs) generate malicious outputs when inputs contain specific "triggers" set by attackers.
Traditional defense strategies are impractical for API-accessible LLMs due to limited model access, high computational costs, and data requirements.
We propose Chain-of-Scrutiny (CoS) which leverages LLMs' unique reasoning abilities to mitigate backdoor attacks.
arXiv Detail & Related papers (2024-06-10T00:53:25Z) - LLM360: Towards Fully Transparent Open-Source LLMs [89.05970416013403]
The goal of LLM360 is to support open and collaborative AI research by making the end-to-end training process transparent and reproducible by everyone.
As a first step of LLM360, we release two 7B parameter LLMs pre-trained from scratch, Amber and CrystalCoder, including their training code, data, intermediate checkpoints, and analyses.
arXiv Detail & Related papers (2023-12-11T17:39:00Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.