Holo-Relighting: Controllable Volumetric Portrait Relighting from a Single Image
- URL: http://arxiv.org/abs/2403.09632v1
- Date: Thu, 14 Mar 2024 17:58:56 GMT
- Title: Holo-Relighting: Controllable Volumetric Portrait Relighting from a Single Image
- Authors: Yiqun Mei, Yu Zeng, He Zhang, Zhixin Shu, Xuaner Zhang, Sai Bi, Jianming Zhang, HyunJoon Jung, Vishal M. Patel,
- Abstract summary: Holo-Relighting is a volumetric relighting method capable of synthesizing novel viewpoints and novel lighting from a single image.
We design a relighting module conditioned on a given lighting to process these features, and predict a relit 3D representation in the form of a tri-plane.
Besides viewpoint and lighting control, Holo-Relighting also takes the head pose as a condition to enable head-pose-dependent lighting effects.
- Score: 41.6305755298805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At the core of portrait photography is the search for ideal lighting and viewpoint. The process often requires advanced knowledge in photography and an elaborate studio setup. In this work, we propose Holo-Relighting, a volumetric relighting method that is capable of synthesizing novel viewpoints, and novel lighting from a single image. Holo-Relighting leverages the pretrained 3D GAN (EG3D) to reconstruct geometry and appearance from an input portrait as a set of 3D-aware features. We design a relighting module conditioned on a given lighting to process these features, and predict a relit 3D representation in the form of a tri-plane, which can render to an arbitrary viewpoint through volume rendering. Besides viewpoint and lighting control, Holo-Relighting also takes the head pose as a condition to enable head-pose-dependent lighting effects. With these novel designs, Holo-Relighting can generate complex non-Lambertian lighting effects (e.g., specular highlights and cast shadows) without using any explicit physical lighting priors. We train Holo-Relighting with data captured with a light stage, and propose two data-rendering techniques to improve the data quality for training the volumetric relighting system. Through quantitative and qualitative experiments, we demonstrate Holo-Relighting can achieve state-of-the-arts relighting quality with better photorealism, 3D consistency and controllability.
Related papers
- Real-time 3D-aware Portrait Video Relighting [89.41078798641732]
We present the first real-time 3D-aware method for relighting in-the-wild videos of talking faces based on Neural Radiance Fields (NeRF)
We infer an albedo tri-plane, as well as a shading tri-plane based on a desired lighting condition for each video frame with fast dual-encoders.
Our method runs at 32.98 fps on consumer-level hardware and achieves state-of-the-art results in terms of reconstruction quality, lighting error, lighting instability, temporal consistency and inference speed.
arXiv Detail & Related papers (2024-10-24T01:34:11Z) - Lite2Relight: 3D-aware Single Image Portrait Relighting [87.62069509622226]
Lite2Relight is a novel technique that can predict 3D consistent head poses of portraits.
By utilizing a pre-trained geometry-aware encoder and a feature alignment module, we map input images into a relightable 3D space.
This includes producing 3D-consistent results of the full head, including hair, eyes, and expressions.
arXiv Detail & Related papers (2024-07-15T07:16:11Z) - IllumiNeRF: 3D Relighting Without Inverse Rendering [25.642960820693947]
We show how to relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry.
We reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting.
We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks.
arXiv Detail & Related papers (2024-06-10T17:59:59Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Deep Portrait Lighting Enhancement with 3D Guidance [24.01582513386902]
We present a novel deep learning framework for portrait lighting enhancement based on 3D facial guidance.
Experimental results on the FFHQ dataset and in-the-wild images show that the proposed method outperforms state-of-the-art methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2021-08-04T15:49:09Z) - Neural Reflectance Fields for Appearance Acquisition [61.542001266380375]
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene.
We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light.
arXiv Detail & Related papers (2020-08-09T22:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.