BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects
- URL: http://arxiv.org/abs/2403.09799v2
- Date: Tue, 16 Apr 2024 22:03:16 GMT
- Title: BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects
- Authors: Tomas Hodan, Martin Sundermeyer, Yann Labbe, Van Nguyen Nguyen, Gu Wang, Eric Brachmann, Bertram Drost, Vincent Lepetit, Carsten Rother, Jiri Matas,
- Abstract summary: The BOP Challenge 2023 is the fifth in a series of public competitions organized to capture the state of the art in model-based 6D object pose estimation.
The best method for seen objects (GPose) achieved a moderate accuracy improvement but a significant 43% run-time improvement compared to the best 2022 counterpart.
- Score: 54.90773237124648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the evaluation methodology, datasets and results of the BOP Challenge 2023, the fifth in a series of public competitions organized to capture the state of the art in model-based 6D object pose estimation from an RGB/RGB-D image and related tasks. Besides the three tasks from 2022 (model-based 2D detection, 2D segmentation, and 6D localization of objects seen during training), the 2023 challenge introduced new variants of these tasks focused on objects unseen during training. In the new tasks, methods were required to learn new objects during a short onboarding stage (max 5 minutes, 1 GPU) from provided 3D object models. The best 2023 method for 6D localization of unseen objects (GenFlow) notably reached the accuracy of the best 2020 method for seen objects (CosyPose), although being noticeably slower. The best 2023 method for seen objects (GPose) achieved a moderate accuracy improvement but a significant 43% run-time improvement compared to the best 2022 counterpart (GDRNPP). Since 2017, the accuracy of 6D localization of seen objects has improved by more than 50% (from 56.9 to 85.6 AR_C). The online evaluation system stays open and is available at: http://bop.felk.cvut.cz/.
Related papers
- ZS6D: Zero-shot 6D Object Pose Estimation using Vision Transformers [9.899633398596672]
We introduce ZS6D, for zero-shot novel object 6D pose estimation.
Visual descriptors, extracted using pre-trained Vision Transformers (ViT), are used for matching rendered templates.
Experiments are performed on LMO, YCBV, and TLESS datasets.
arXiv Detail & Related papers (2023-09-21T11:53:01Z) - BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of
Specific Rigid Objects [59.70444717956975]
Methods based on point pair features, which were introduced in 2010, are now clearly outperformed by deep learning methods.
The synthetic-to-real domain gap was again significantly reduced.
The fastest variant of GDRNPP reached 80.5 AR$_C$ with an average time per image of 0.23s.
arXiv Detail & Related papers (2023-02-25T13:12:50Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation [73.40404343241782]
We propose a weakly supervised 6D object pose estimation approach based on 2D keypoint detection.
Our approach achieves comparable performance with state-of-the-art fully supervised approaches.
arXiv Detail & Related papers (2022-03-07T16:23:47Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - EfficientPose: An efficient, accurate and scalable end-to-end 6D multi
object pose estimation approach [0.0]
We introduce EfficientPose, a new approach for 6D object pose estimation.
It is highly accurate, efficient and scalable over a wide range of computational resources.
It can detect the 2D bounding box of multiple objects and instances as well as estimate their full 6D poses in a single shot.
arXiv Detail & Related papers (2020-11-09T10:23:55Z) - Single Shot 6D Object Pose Estimation [11.37625512264302]
We introduce a novel single shot approach for 6D object pose estimation of rigid objects based on depth images.
A fully convolutional neural network is employed, where the 3D input data is spatially discretized and pose estimation is considered as a regression task.
With 65 fps on a GPU, our Object Pose Network (OP-Net) is extremely fast, is optimized end-to-end, and estimates the 6D pose of multiple objects in the image simultaneously.
arXiv Detail & Related papers (2020-04-27T11:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.