論文の概要: Scaling Behavior of Machine Translation with Large Language Models under Prompt Injection Attacks
- arxiv url: http://arxiv.org/abs/2403.09832v1
- Date: Thu, 14 Mar 2024 19:39:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:15:39.822457
- Title: Scaling Behavior of Machine Translation with Large Language Models under Prompt Injection Attacks
- Title(参考訳): プロンプトインジェクションアタックによる大規模言語モデルによる機械翻訳のスケーリング挙動
- Authors: Zhifan Sun, Antonio Valerio Miceli-Barone,
- Abstract要約: 大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて好まれる基盤プラットフォームになりつつある。
彼らの汎用性は、要求命令に埋め込み、モデルが無許可でおそらく安全でない方法で振る舞うエンドユーザによって、それらをサブバージョンに開放する。
本研究では,これらのプロンプトインジェクション・アタック(PIA)をLLMの複数のファミリーで機械翻訳タスクに適用し,モデルサイズが攻撃成功率に与える影響に着目した。
- 参考スコア(独自算出の注目度): 4.459306403129608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly becoming the preferred foundation platforms for many Natural Language Processing tasks such as Machine Translation, owing to their quality often comparable to or better than task-specific models, and the simplicity of specifying the task through natural language instructions or in-context examples. Their generality, however, opens them up to subversion by end users who may embed into their requests instructions that cause the model to behave in unauthorized and possibly unsafe ways. In this work we study these Prompt Injection Attacks (PIAs) on multiple families of LLMs on a Machine Translation task, focusing on the effects of model size on the attack success rates. We introduce a new benchmark data set and we discover that on multiple language pairs and injected prompts written in English, larger models under certain conditions may become more susceptible to successful attacks, an instance of the Inverse Scaling phenomenon (McKenzie et al., 2023). To our knowledge, this is the first work to study non-trivial LLM scaling behaviour in a multi-lingual setting.
- Abstract(参考訳): 大規模言語モデル(LLM)は、機械翻訳のような多くの自然言語処理タスクにおいて、タスク固有のモデルに匹敵する品質や、自然言語命令やコンテキスト内例によるタスク特定の単純さから、ますます好まれる基盤プラットフォームになりつつある。
しかし、その汎用性は、要求命令に埋め込み、モデルが無許可でおそらく安全でない方法で振る舞うようなエンドユーザによるサブバージョンにそれらを開放する。
本研究では,機械翻訳タスクにおける複数のLLMのファミリー上でのこれらのプロンプト注入攻撃(PIAs)について検討し,モデルサイズが攻撃成功率に与える影響に着目した。
新しいベンチマークデータセットを導入し、複数の言語ペアと英語で書かれたプロンプトをインジェクトすることで、特定の条件下でのより大きなモデルが攻撃を成功させる可能性が高まることを発見した(McKenzie et al , 2023)。
我々の知る限り、これは多言語環境での非自明なLLMスケーリングの振る舞いを研究する最初の研究である。
関連論文リスト
- The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
本稿では,大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメント手法を提案する。
実験結果から,質問アライメント手法は多様な推論シナリオにおける多言語のパフォーマンス向上に有効であることが示唆された。
その成功のメカニズムを理解するために、表現空間、チェーン・オブ・シンク、翻訳データスケールを分析する。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
大規模言語モデル(LLM)は近年,多種多様な言語関連タスクに多大な影響を与えている。
本稿では,複数のLLMを比較した機械翻訳タスクに特化して,コード切替タスクについて広範な研究を行う。
以上の結果から,LLMは特定のタスクに有望な結果をもたらすにもかかわらず,機械翻訳タスクにおける多言語大言語モデルよりも比較的少ない複雑性を持つモデルの方が優れていることが示唆された。
論文 参考訳(メタデータ) (2023-12-20T16:40:33Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - Benchmarking Large Language Model Capabilities for Conditional
Generation [15.437176676169997]
既存のアプリケーション固有の生成ベンチマークをPLMに適応させる方法について論じる。
PLMは異なるデータ体系に適用可能であり、複数の言語に一般化可能であることを示す。
論文 参考訳(メタデータ) (2023-06-29T08:59:40Z) - Language Models Implement Simple Word2Vec-style Vector Arithmetic [32.2976613483151]
言語モデル(LM)に対する主要な批判は、その調査性である。
本稿では,その大きさと複雑さにもかかわらず,LMは単純なベクトル演算方式を用いて,いくつかのリレーショナルタスクを解くことの証拠を提示する。
論文 参考訳(メタデータ) (2023-05-25T15:04:01Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
SAP(Sequential Autoregressive Prompting)は,双方向モデルの高速化を実現する技術である。
SAPは質問応答と要約に有効であることを示す。
この結果から,より広範な言語モデルの創発的特性として,プロンプトに基づく学習が証明された。
論文 参考訳(メタデータ) (2022-09-29T01:35:57Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
論文 参考訳(メタデータ) (2022-04-05T16:11:45Z) - Examining Scaling and Transfer of Language Model Architectures for
Machine Translation [51.69212730675345]
言語モデル(LM)は単一のレイヤのスタックで処理し、エンコーダ・デコーダモデル(EncDec)は入力と出力の処理に別々のレイヤスタックを使用する。
機械翻訳において、EncDecは長年好まれてきたアプローチであるが、LMの性能についての研究はほとんどない。
論文 参考訳(メタデータ) (2022-02-01T16:20:15Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
ELMOやBERTのような深い文脈言語モデル(LM)は、自然言語処理のランドスケープを支配している。
XLM-RやmBERTのような多言語モデルでは、ゼロショットのクロスリンガル転送が期待できる結果となった。
この最初の成功により、訓練済みのモデルはユニバーサル言語モデルとして使用されている。
論文 参考訳(メタデータ) (2021-09-15T08:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。