Right Place, Right Time! Towards ObjectNav for Non-Stationary Goals
- URL: http://arxiv.org/abs/2403.09905v1
- Date: Thu, 14 Mar 2024 22:33:22 GMT
- Title: Right Place, Right Time! Towards ObjectNav for Non-Stationary Goals
- Authors: Vishnu Sashank Dorbala, Bhrij Patel, Amrit Singh Bedi, Dinesh Manocha,
- Abstract summary: We present a novel approach to tackle the ObjectNav task for non-stationary and potentially occluded targets in an indoor environment.
We present its formulation, feasibility, and a navigation benchmark using a novel memory-enhanced LLM-based policy.
- Score: 55.581423861790945
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a novel approach to tackle the ObjectNav task for non-stationary and potentially occluded targets in an indoor environment. We refer to this task Portable ObjectNav (or P-ObjectNav), and in this work, present its formulation, feasibility, and a navigation benchmark using a novel memory-enhanced LLM-based policy. In contrast to ObjNav where target object locations are fixed for each episode, P-ObjectNav tackles the challenging case where the target objects move during the episode. This adds a layer of time-sensitivity to navigation, and is particularly relevant in scenarios where the agent needs to find portable targets (e.g. misplaced wallets) in human-centric environments. The agent needs to estimate not just the correct location of the target, but also the time at which the target is at that location for visual grounding -- raising the question about the feasibility of the task. We address this concern by inferring results on two cases for object placement: one where the objects placed follow a routine or a path, and the other where they are placed at random. We dynamize Matterport3D for these experiments, and modify PPO and LLM-based navigation policies for evaluation. Using PPO, we observe that agent performance in the random case stagnates, while the agent in the routine-following environment continues to improve, allowing us to infer that P-ObjectNav is solvable in environments with routine-following object placement. Using memory-enhancement on an LLM-based policy, we set a benchmark for P-ObjectNav. Our memory-enhanced agent significantly outperforms their non-memory-based counterparts across object placement scenarios by 71.76% and 74.68% on average when measured by Success Rate (SR) and Success Rate weighted by Path Length (SRPL), showing the influence of memory on improving P-ObjectNav performance. Our code and dataset will be made publicly available.
Related papers
- Personalized Instance-based Navigation Toward User-Specific Objects in Realistic Environments [44.6372390798904]
We propose a new task denominated Personalized Instance-based Navigation (PIN), in which an embodied agent is tasked with locating and reaching a specific personal object.
In each episode, the target object is presented to the agent using two modalities: a set of visual reference images on a neutral background and manually annotated textual descriptions.
arXiv Detail & Related papers (2024-10-23T18:01:09Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
We present LGX, a novel algorithm for Language-Driven Zero-Shot Object Goal Navigation (L-ZSON)
Our approach makes use of Large Language Models (LLMs) for this task.
We achieve state-of-the-art zero-shot object navigation results on RoboTHOR with a success rate (SR) improvement of over 27% over the current baseline.
arXiv Detail & Related papers (2023-03-06T20:19:19Z) - A Contextual Bandit Approach for Learning to Plan in Environments with
Probabilistic Goal Configurations [20.15854546504947]
We propose a modular framework for object-nav that is able to efficiently search indoor environments for not just static objects but also movable objects.
Our contextual-bandit agent efficiently explores the environment by showing optimism in the face of uncertainty.
We evaluate our algorithms in two simulated environments and a real-world setting, to demonstrate high sample efficiency and reliability.
arXiv Detail & Related papers (2022-11-29T15:48:54Z) - Object Memory Transformer for Object Goal Navigation [10.359616364592075]
This paper presents a reinforcement learning method for object goal navigation (Nav)
An agent navigates in 3D indoor environments to reach a target object based on long-term observations of objects and scenes.
To the best of our knowledge, this is the first work that uses a long-term memory of object semantics in a goal-oriented navigation task.
arXiv Detail & Related papers (2022-03-24T09:16:56Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - Navigating to Objects in Unseen Environments by Distance Prediction [16.023495311387478]
We propose an object goal navigation framework, which could directly perform path planning based on an estimated distance map.
Specifically, our model takes a birds-eye-view semantic map as input, and estimates the distance from the map cells to the target object.
With the estimated distance map, the agent could explore the environment and navigate to the target objects based on either human-designed or learned navigation policy.
arXiv Detail & Related papers (2022-02-08T09:22:50Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
We focus on the problem of learning an optimal policy for Active Visual Search (AVS) of objects in known indoor environments with an online setup.
Our POMP method uses as input the current pose of an agent and a RGB-D frame.
We validate our method on the publicly available AVD benchmark, achieving an average success rate of 0.76 with an average path length of 17.1.
arXiv Detail & Related papers (2020-09-17T08:23:50Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z) - ObjectNav Revisited: On Evaluation of Embodied Agents Navigating to
Objects [119.46959413000594]
This document summarizes the consensus recommendations of a working group on ObjectNav.
We make recommendations on subtle but important details of evaluation criteria.
We provide a detailed description of the instantiation of these recommendations in challenges organized at the Embodied AI workshop at CVPR 2020.
arXiv Detail & Related papers (2020-06-23T17:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.