Object Goal Navigation using Goal-Oriented Semantic Exploration
- URL: http://arxiv.org/abs/2007.00643v2
- Date: Thu, 2 Jul 2020 01:38:41 GMT
- Title: Object Goal Navigation using Goal-Oriented Semantic Exploration
- Authors: Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, Ruslan
Salakhutdinov
- Abstract summary: This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
- Score: 98.14078233526476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies the problem of object goal navigation which involves
navigating to an instance of the given object category in unseen environments.
End-to-end learning-based navigation methods struggle at this task as they are
ineffective at exploration and long-term planning. We propose a modular system
called, `Goal-Oriented Semantic Exploration' which builds an episodic semantic
map and uses it to explore the environment efficiently based on the goal object
category. Empirical results in visually realistic simulation environments show
that the proposed model outperforms a wide range of baselines including
end-to-end learning-based methods as well as modular map-based methods and led
to the winning entry of the CVPR-2020 Habitat ObjectNav Challenge. Ablation
analysis indicates that the proposed model learns semantic priors of the
relative arrangement of objects in a scene, and uses them to explore
efficiently. Domain-agnostic module design allow us to transfer our model to a
mobile robot platform and achieve similar performance for object goal
navigation in the real-world.
Related papers
- Leveraging Large Language Model-based Room-Object Relationships Knowledge for Enhancing Multimodal-Input Object Goal Navigation [11.510823733292519]
We propose a data-driven, modular-based approach, trained on a dataset that incorporates common-sense knowledge of object-to-room relationships extracted from a large language model.
The results in the Habitat simulator demonstrate that our framework outperforms the baseline by an average of 10.6% in the efficiency metric, Success weighted by Path Length (SPL).
arXiv Detail & Related papers (2024-03-21T06:32:36Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Navigating to Objects Specified by Images [86.9672766351891]
We present a system that can perform the task in both simulation and the real world.
Our modular method solves sub-tasks of exploration, goal instance re-identification, goal localization, and local navigation.
On the HM3D InstanceImageNav benchmark, this system outperforms a baseline end-to-end RL policy 7x and a state-of-the-art ImageNav model 2.3x.
arXiv Detail & Related papers (2023-04-03T17:58:00Z) - Navigating to Objects in Unseen Environments by Distance Prediction [16.023495311387478]
We propose an object goal navigation framework, which could directly perform path planning based on an estimated distance map.
Specifically, our model takes a birds-eye-view semantic map as input, and estimates the distance from the map cells to the target object.
With the estimated distance map, the agent could explore the environment and navigate to the target objects based on either human-designed or learned navigation policy.
arXiv Detail & Related papers (2022-02-08T09:22:50Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
This work studies object goal navigation task, which involves navigating to the closest object related to the given semantic category in unseen environments.
Recent works have shown significant achievements both in the end-to-end Reinforcement Learning approach and modular systems, but need a big step forward to be robust and optimal.
We propose a hierarchical method that incorporates standard task formulation and additional area knowledge as landmarks, with a way to extract these landmarks.
arXiv Detail & Related papers (2021-09-17T12:28:46Z) - Learning to Map for Active Semantic Goal Navigation [40.193928212509356]
We propose a novel framework that actively learns to generate semantic maps outside the field of view of the agent.
We show how different objectives can be defined by balancing exploration with exploitation.
Our method is validated in the visually realistic environments offered by the Matterport3D dataset.
arXiv Detail & Related papers (2021-06-29T18:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.