Robust Light-Weight Facial Affective Behavior Recognition with CLIP
- URL: http://arxiv.org/abs/2403.09915v2
- Date: Sun, 8 Sep 2024 04:43:38 GMT
- Title: Robust Light-Weight Facial Affective Behavior Recognition with CLIP
- Authors: Li Lin, Sarah Papabathini, Xin Wang, Shu Hu,
- Abstract summary: Human affective behavior analysis aims to delve into human expressions and behaviors to deepen our understanding of human emotions.
Existing approaches in expression classification and AU detection often necessitate complex models and substantial computational resources.
We introduce the first lightweight framework adept at efficiently tackling both expression classification and AU detection.
- Score: 12.368133562194267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human affective behavior analysis aims to delve into human expressions and behaviors to deepen our understanding of human emotions. Basic expression categories (EXPR) and Action Units (AUs) are two essential components in this analysis, which categorize emotions and break down facial movements into elemental units, respectively. Despite advancements, existing approaches in expression classification and AU detection often necessitate complex models and substantial computational resources, limiting their applicability in everyday settings. In this work, we introduce the first lightweight framework adept at efficiently tackling both expression classification and AU detection. This framework employs a frozen CLIP image encoder alongside a trainable multilayer perceptron (MLP), enhanced with Conditional Value at Risk (CVaR) for robustness and a loss landscape flattening strategy for improved generalization. Experimental results on the Aff-wild2 dataset demonstrate superior performance in comparison to the baseline while maintaining minimal computational demands, offering a practical solution for affective behavior analysis. The code is available at https://github.com/Purdue-M2/Affective_Behavior_Analysis_M2_PURDUE
Related papers
- Efficient Human-Object-Interaction (EHOI) Detection via Interaction Label Coding and Conditional Decision [33.59153869330463]
An Efficient HOI (EHOI) detector is proposed in this work to strike a good balance between detection performance, inference complexity, and mathematical transparency.
Our contributions include the application of error correction codes (ECCs) to encode rare interaction cases.
Experimental results demonstrate the advantages of ECC-coded interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI method.
arXiv Detail & Related papers (2024-08-13T16:34:06Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Facial Affective Behavior Analysis with Instruction Tuning [58.332959295770614]
Facial affective behavior analysis (FABA) is crucial for understanding human mental states from images.
Traditional approaches primarily deploy models to discriminate among discrete emotion categories, and lack the fine granularity and reasoning capability for complex facial behaviors.
We introduce an instruction-following dataset for two FABA tasks, emotion and action unit recognition, and a benchmark FABA-Bench with a new metric considering both recognition and generation ability.
We also introduce a facial prior expert module with face structure knowledge and a low-rank adaptation module into pre-trained MLLM.
arXiv Detail & Related papers (2024-04-07T19:23:28Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
Human-Object Interaction (HOI) detection is a core task for human-centric image understanding.
Recent one-stage methods adopt a transformer decoder to collect image-wide cues that are useful for interaction prediction.
Traditional two-stage methods benefit significantly from their ability to compose interaction features in a disentangled and explainable manner.
arXiv Detail & Related papers (2023-12-04T08:02:59Z) - Weakly-supervised HOI Detection via Prior-guided Bi-level Representation
Learning [66.00600682711995]
Human object interaction (HOI) detection plays a crucial role in human-centric scene understanding and serves as a fundamental building-block for many vision tasks.
One generalizable and scalable strategy for HOI detection is to use weak supervision, learning from image-level annotations only.
This is inherently challenging due to ambiguous human-object associations, large search space of detecting HOIs and highly noisy training signal.
We develop a CLIP-guided HOI representation capable of incorporating the prior knowledge at both image level and HOI instance level, and adopt a self-taught mechanism to prune incorrect human-object associations.
arXiv Detail & Related papers (2023-03-02T14:41:31Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - Frame-level Prediction of Facial Expressions, Valence, Arousal and
Action Units for Mobile Devices [7.056222499095849]
We propose the novel frame-level emotion recognition algorithm by extracting facial features with the single EfficientNet model pre-trained on AffectNet.
Our approach may be implemented even for video analytics on mobile devices.
arXiv Detail & Related papers (2022-03-25T03:53:27Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
Existing methods assume that all emotions-of-interest are given a priori as annotated training examples.
We conceptualize one-shot recognition of emotions in context -- a new problem aimed at recognizing human affect states in finer particle level from a single support sample.
All variants of our model clearly outperform the random baseline, while leveraging the semantic scene context consistently improves the learnt representations.
arXiv Detail & Related papers (2021-11-30T10:35:20Z) - Modeling Dynamics of Facial Behavior for Mental Health Assessment [4.130361751085622]
We explore the possibility of representing the dynamics of facial expressions by adopting algorithms used for word representation in natural language processing.
We perform clustering on a large dataset of temporal facial expressions with 5.3M frames before applying the Global Vector representation (GloVe) algorithm to learn the embeddings of the facial clusters.
We evaluate the usefulness of our learned representations on two downstream tasks: schizophrenia symptom severity estimation and depression regression.
arXiv Detail & Related papers (2021-08-23T05:08:45Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.