Efficient Human-Object-Interaction (EHOI) Detection via Interaction Label Coding and Conditional Decision
- URL: http://arxiv.org/abs/2408.07018v1
- Date: Tue, 13 Aug 2024 16:34:06 GMT
- Title: Efficient Human-Object-Interaction (EHOI) Detection via Interaction Label Coding and Conditional Decision
- Authors: Tsung-Shan Yang, Yun-Cheng Wang, Chengwei Wei, Suya You, C. -C. Jay Kuo,
- Abstract summary: An Efficient HOI (EHOI) detector is proposed in this work to strike a good balance between detection performance, inference complexity, and mathematical transparency.
Our contributions include the application of error correction codes (ECCs) to encode rare interaction cases.
Experimental results demonstrate the advantages of ECC-coded interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI method.
- Score: 33.59153869330463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-Object Interaction (HOI) detection is a fundamental task in image understanding. While deep-learning-based HOI methods provide high performance in terms of mean Average Precision (mAP), they are computationally expensive and opaque in training and inference processes. An Efficient HOI (EHOI) detector is proposed in this work to strike a good balance between detection performance, inference complexity, and mathematical transparency. EHOI is a two-stage method. In the first stage, it leverages a frozen object detector to localize the objects and extract various features as intermediate outputs. In the second stage, the first-stage outputs predict the interaction type using the XGBoost classifier. Our contributions include the application of error correction codes (ECCs) to encode rare interaction cases, which reduces the model size and the complexity of the XGBoost classifier in the second stage. Additionally, we provide a mathematical formulation of the relabeling and decision-making process. Apart from the architecture, we present qualitative results to explain the functionalities of the feedforward modules. Experimental results demonstrate the advantages of ECC-coded interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI method.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - Task-Oriented Over-the-Air Computation for Multi-Device Edge AI [57.50247872182593]
6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task.
Task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system.
arXiv Detail & Related papers (2022-11-02T16:35:14Z) - UniASM: Binary Code Similarity Detection without Fine-tuning [0.8271859911016718]
We propose a novel transformer-based binary code embedding model named UniASM to learn representations of the binary functions.
In the real-world task of known vulnerability search, UniASM outperforms all the current baselines.
arXiv Detail & Related papers (2022-10-28T14:04:57Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Modulating Localization and Classification for Harmonized Object
Detection [40.82723262074911]
We propose a mutual learning framework to modulate the two tasks.
In particular, the two tasks are forced to learn from each other with a novel mutual labeling strategy.
We achieve a significant performance gain over the baseline detectors on the COCO dataset.
arXiv Detail & Related papers (2021-03-16T10:36:02Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.