論文の概要: Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2403.09981v1
- Date: Fri, 15 Mar 2024 02:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:48:40.195358
- Title: Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting
- Title(参考訳): 表面配向ガウス平板による可制御型テキスト・ツー・3D生成
- Authors: Zhiqi Li, Yiming Chen, Lingzhe Zhao, Peidong Liu,
- Abstract要約: 本稿では,既存の多視点拡散モデルを強化するために設計されたニューラルネットワークアーキテクチャであるMulti-view ControlNet(MVControl)を紹介する。
MVControlは最適化ベースの3D生成のための3D拡散ガイダンスを提供することができる。
効率性を追求するために、一般的に使用される暗黙の表現の代わりに、3Dガウスを表現として採用する。
- 参考スコア(独自算出の注目度): 9.383423119196408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While text-to-3D and image-to-3D generation tasks have received considerable attention, one important but under-explored field between them is controllable text-to-3D generation, which we mainly focus on in this work. To address this task, 1) we introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing pre-trained multi-view diffusion models by integrating additional input conditions, such as edge, depth, normal, and scribble maps. Our innovation lies in the introduction of a conditioning module that controls the base diffusion model using both local and global embeddings, which are computed from the input condition images and camera poses. Once trained, MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation. And, 2) we propose an efficient multi-stage 3D generation pipeline that leverages the benefits of recent large reconstruction models and score distillation algorithm. Building upon our MVControl architecture, we employ a unique hybrid diffusion guidance method to direct the optimization process. In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations. We also pioneer the use of SuGaR, a hybrid representation that binds Gaussians to mesh triangle faces. This approach alleviates the issue of poor geometry in 3D Gaussians and enables the direct sculpting of fine-grained geometry on the mesh. Extensive experiments demonstrate that our method achieves robust generalization and enables the controllable generation of high-quality 3D content.
- Abstract(参考訳): テキスト・トゥ・3Dと画像・ツー・3D生成タスクは注目されているが,その間には制御可能なテキスト・ツー・3D生成機能がある。
この課題に対処する。
1)Multi-view ControlNet(MVControl)は,エッジ,深さ,正規,スクリブルマップなどの入力条件を統合することで,既存のトレーニング済みのマルチビュー拡散モデルを強化するニューラルネットワークアーキテクチャである。
我々の革新は、入力条件画像とカメラポーズから計算される局所的およびグローバルな埋め込みを用いてベース拡散モデルを制御する条件付きモジュールの導入にある。
トレーニングが完了すると、MVControlは最適化ベースの3D生成のための3D拡散ガイダンスを提供することができる。
そして
2) 近年の大規模再構成モデルとスコア蒸留アルゴリズムの利点を生かした,効率的な多段3D生成パイプラインを提案する。
MVControlアーキテクチャを基盤として,最適化プロセスの指示に独自のハイブリッド拡散誘導手法を採用している。
効率性を追求するために、一般的に使用される暗黙の表現の代わりに、3Dガウスを表現として採用する。
我々はまた、ガウスを三角形の面に結合するハイブリッド表現SuGaRの使用の先駆者でもある。
このアプローチは、3Dガウスの幾何学の問題を緩和し、メッシュ上の微細な幾何学を直接彫刻することを可能にする。
大規模な実験により,本手法は堅牢な一般化を実現し,高品質な3Dコンテンツの制御可能な生成を可能にした。
関連論文リスト
- F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting [35.625593119642424]
本稿では,モノケプラーデータセットから3次元認識を一般化する問題に取り組む。
画素整列型ガウススプラッティングに基づく新しいフィードフォワードパイプラインを提案する。
また、学習した3D表現において、クロスビューの一貫性を強制するために、自己教師付きサイクル一貫性制約を導入する。
論文 参考訳(メタデータ) (2025-01-12T04:44:44Z) - Prometheus: 3D-Aware Latent Diffusion Models for Feed-Forward Text-to-3D Scene Generation [51.36926306499593]
Prometheusはオブジェクトレベルとシーンレベルの両方を秒単位でテキストから3D生成するための3D対応潜時拡散モデルである。
遅延拡散パラダイムにおいて、3Dシーン生成を多視点, フィードフォワード, ピクセルアラインな3Dガウス生成として定式化する。
論文 参考訳(メタデータ) (2024-12-30T17:44:23Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGSは、スパースビュー画像が与えられたガウススプラッティングの拡散モデルである。
我々は3Dガウスを生成するためにトランスフォーマーネットワークを経由する新しい視点を利用する。
論文 参考訳(メタデータ) (2024-11-25T07:57:17Z) - DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
本稿では,メッシュ表現と幾何スキン技術を組み合わせた新しいフレームワークDreamMesh4Dを紹介し,モノクロビデオから高品質な4Dオブジェクトを生成する。
我々の手法は現代のグラフィックパイプラインと互換性があり、3Dゲームや映画産業におけるその可能性を示している。
論文 参考訳(メタデータ) (2024-10-09T10:41:08Z) - AugGS: Self-augmented Gaussians with Structural Masks for Sparse-view 3D Reconstruction [9.953394373473621]
スパースビュー3D再構成はコンピュータビジョンにおける大きな課題である。
本研究では,スパース・ビュー3D再構成のための構造マスクを付加した自己拡張型2段ガウス・スプレイティング・フレームワークを提案する。
提案手法は,認識品質における最先端性能と,スパース入力との多視点整合性を実現する。
論文 参考訳(メタデータ) (2024-08-09T03:09:22Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation [85.15374487533643]
約0.1秒でスパースビュー画像から3Dアセットを復元できる大規模再構成機であるGRMを紹介する。
GRMは、マルチビュー情報を効率的に組み込んだフィードフォワードトランスフォーマーベースのモデルである。
また,既存の多視点拡散モデルと統合することにより,テキスト・ツー・3Dや画像・ツー・3Dといった生成タスクにおけるGRMの可能性を示す。
論文 参考訳(メタデータ) (2024-03-21T17:59:34Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3Dは、単一視点画像から高忠実なテクスチャメッシュを効率的に生成する新しい手法である。
画像から3Dまでのタスクの品質,一貫性,効率性を総括的に改善するため,領域間拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-10-23T15:02:23Z) - GVP: Generative Volumetric Primitives [76.95231302205235]
本稿では,512解像度画像をリアルタイムにサンプリング・レンダリングできる最初の純3次元生成モデルである生成ボリュームプリミティブ(GVP)を提案する。
GVPは、複数のプリミティブとその空間情報を共同でモデル化し、どちらも2D畳み込みネットワークを介して効率的に生成することができる。
いくつかのデータセットの実験は、最先端技術よりも優れた効率性とGVPの3次元一貫性を示す。
論文 参考訳(メタデータ) (2023-03-31T16:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。