論文の概要: Time-Frequency Jointed Imperceptible Adversarial Attack to Brainprint Recognition with Deep Learning Models
- arxiv url: http://arxiv.org/abs/2403.10021v2
- Date: Fri, 26 Apr 2024 07:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 17:18:42.229271
- Title: Time-Frequency Jointed Imperceptible Adversarial Attack to Brainprint Recognition with Deep Learning Models
- Title(参考訳): 深層学習モデルを用いた脳内画像認識における時間周波数結合型非知覚的対立攻撃
- Authors: Hangjie Yi, Yuhang Ming, Dongjun Liu, Wanzeng Kong,
- Abstract要約: 本稿では,時間領域と周波数領域のEEG信号を同時攻撃する新たな敵攻撃手法を提案する。
本手法は,3つのデータセットと3つのディープラーニングモデルに対して,最先端の攻撃性能を実現する。
- 参考スコア(独自算出の注目度): 7.019918611093632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EEG-based brainprint recognition with deep learning models has garnered much attention in biometric identification. Yet, studies have indicated vulnerability to adversarial attacks in deep learning models with EEG inputs. In this paper, we introduce a novel adversarial attack method that jointly attacks time-domain and frequency-domain EEG signals by employing wavelet transform. Different from most existing methods which only target time-domain EEG signals, our method not only takes advantage of the time-domain attack's potent adversarial strength but also benefits from the imperceptibility inherent in frequency-domain attack, achieving a better balance between attack performance and imperceptibility. Extensive experiments are conducted in both white- and grey-box scenarios and the results demonstrate that our attack method achieves state-of-the-art attack performance on three datasets and three deep-learning models. In the meanwhile, the perturbations in the signals attacked by our method are barely perceptible to the human visual system.
- Abstract(参考訳): 深層学習モデルを用いた脳波に基づく脳プリント認識は生体認証において多くの注目を集めている。
しかし,脳波入力を伴う深層学習モデルにおいて,敵対的攻撃に対する脆弱性が示唆されている。
本稿では,ウェーブレット変換を用いて,時間領域と周波数領域のEEG信号を同時攻撃する新たな逆攻撃手法を提案する。
時間領域脳波信号のみをターゲットとする既存の方法とは異なり、我々の手法は時間領域攻撃の強力な対角的強度を活かすだけでなく、周波数領域攻撃に固有の非受容性の利点も生かし、攻撃性能と非受容性のバランスを良くする。
その結果、3つのデータセットと3つのディープラーニングモデルに対して、攻撃手法が最先端の攻撃性能を達成することを実証した。
一方、我々の方法で攻撃された信号の摂動は、人間の視覚系に対してほとんど認識できない。
関連論文リスト
- PAD-Phys: Exploiting Physiology for Presentation Attack Detection in
Face Biometrics [48.683457383784145]
r: (i) 生理領域, (ii) ディープフェイクス領域, (iii) プレゼンテーション攻撃領域に基づく提示攻撃検出のための3つのアプローチ
その結果、プレゼンテーションアタックドメインを生理的およびディープフェイクスドメインと比較すると、平均分類誤り率(ACER)が21.70%減少していることがわかった。
実験では、r-ベースモデルにおける伝達学習の効率を強調し、この生理的特徴のコピーを許さない機器での提示攻撃検出をうまく行う。
論文 参考訳(メタデータ) (2023-10-03T15:24:15Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Exploring the Physical World Adversarial Robustness of Vehicle Detection [13.588120545886229]
アドリアックは現実世界の検知モデルの堅牢性を損なう可能性がある。
CARLAシミュレータを用いた革新的なインスタントレベルデータ生成パイプラインを提案する。
本研究は, 逆境条件下での多種多様なモデル性能について考察した。
論文 参考訳(メタデータ) (2023-08-07T11:09:12Z) - Adversarial Vulnerability of Temporal Feature Networks for Object
Detection [5.525433572437716]
本研究では,物体検出のための時間的特徴ネットワークが,普遍的敵攻撃に対して脆弱であるかどうかを検討する。
画像全体に対する知覚不能ノイズと,局所的な対向パッチの2種類の攻撃について検討した。
KITTIおよびnuScenesデータセットに関する実験により、K-PGDによるロバスト化モデルが、研究された攻撃に耐えられることを示した。
論文 参考訳(メタデータ) (2022-08-23T07:08:54Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。