Lifelong Person Re-Identification with Backward-Compatibility
- URL: http://arxiv.org/abs/2403.10022v2
- Date: Mon, 18 Mar 2024 01:57:08 GMT
- Title: Lifelong Person Re-Identification with Backward-Compatibility
- Authors: Minyoung Oh, Jae-Young Sim,
- Abstract summary: Lifelong person re-identification (LReID) assumes a practical scenario where the model is sequentially trained on continuously incoming datasets.
In this paper, we address the above mentioned problem by incorporating the backward-compatibility to LReID for the first time.
- Score: 9.94228688034577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lifelong person re-identification (LReID) assumes a practical scenario where the model is sequentially trained on continuously incoming datasets while alleviating the catastrophic forgetting in the old datasets. However, not only the training datasets but also the gallery images are incrementally accumulated, that requires a huge amount of computational complexity and storage space to extract the features at the inference phase. In this paper, we address the above mentioned problem by incorporating the backward-compatibility to LReID for the first time. We train the model using the continuously incoming datasets while maintaining the model's compatibility toward the previously trained old models without re-computing the features of the old gallery images. To this end, we devise the cross-model compatibility loss based on the contrastive learning with respect to the replay features across all the old datasets. Moreover, we also develop the knowledge consolidation method based on the part classification to learn the shared representation across different datasets for the backward-compatibility. We suggest a more practical methodology for performance evaluation as well where all the gallery and query images are considered together. Experimental results demonstrate that the proposed method achieves a significantly higher performance of the backward-compatibility compared with the existing methods. It is a promising tool for more practical scenarios of LReID.
Related papers
- Backward-Compatible Aligned Representations via an Orthogonal Transformation Layer [20.96380700548786]
Visual retrieval systems face challenges when updating models with improved representations due to misalignment between the old and new representations.
Prior research has explored backward-compatible training methods that enable direct comparisons between new and old representations without backfilling.
In this paper, we address achieving a balance between backward compatibility and the performance of independently trained models.
arXiv Detail & Related papers (2024-08-16T15:05:28Z) - Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements [20.96380700548786]
Learning compatible representations enables the interchangeable use of semantic features as models are updated over time.
This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model.
We show that the stationary representations learned by the $d$-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition.
arXiv Detail & Related papers (2024-05-04T06:31:38Z) - Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - MixBCT: Towards Self-Adapting Backward-Compatible Training [66.52766344751635]
We propose MixBCT, a simple yet highly effective backward-compatible training method.
We conduct experiments on the large-scale face recognition datasets MS1Mv3 and IJB-C.
arXiv Detail & Related papers (2023-08-14T05:55:38Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - FastFill: Efficient Compatible Model Update [40.27741553705222]
FastFill is a compatible model update process using feature alignment and policy based partial backfilling.
We show that previous backfilling strategies suffer from decreased performance and demonstrate the importance of both the training objective and the ordering in online partial backfilling.
arXiv Detail & Related papers (2023-03-08T18:03:51Z) - Towards Universal Backward-Compatible Representation Learning [29.77801805854168]
backward-compatible representation learning is introduced to support backfill-free model upgrades.
We first introduce a new problem of universal backward-compatible representation learning, covering all possible data split in model upgrades.
We propose a simple yet effective method, dubbed Universal Backward- Training (UniBCT) with a novel structural prototype refinement algorithm.
arXiv Detail & Related papers (2022-03-03T09:23:51Z) - Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints [80.60538408386016]
Estimating relative camera poses from consecutive frames is a fundamental problem in visual odometry.
We propose an end-to-end trainable framework consisting of learnable modules for detection, feature extraction, matching and outlier rejection.
arXiv Detail & Related papers (2020-07-29T21:41:31Z) - Memory-Efficient Incremental Learning Through Feature Adaptation [71.1449769528535]
We introduce an approach for incremental learning that preserves feature descriptors of training images from previously learned classes.
Keeping the much lower-dimensional feature embeddings of images reduces the memory footprint significantly.
Experimental results show that our method achieves state-of-the-art classification accuracy in incremental learning benchmarks.
arXiv Detail & Related papers (2020-04-01T21:16:05Z) - Towards Backward-Compatible Representation Learning [86.39292571306395]
We propose a way to learn visual features that are compatible with previously computed ones even when they have different dimensions.
This enables visual search systems to bypass computing new features for all previously seen images when updating the embedding models.
We propose a framework to train embedding models, called backward-compatible training (BCT), as a first step towards backward compatible representation learning.
arXiv Detail & Related papers (2020-03-26T14:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.