Towards Embedding Dynamic Personas in Interactive Robots: Masquerading Animated Social Kinematics (MASK)
- URL: http://arxiv.org/abs/2403.10041v2
- Date: Mon, 07 Oct 2024 14:33:28 GMT
- Title: Towards Embedding Dynamic Personas in Interactive Robots: Masquerading Animated Social Kinematics (MASK)
- Authors: Jeongeun Park, Taemoon Jeong, Hyeonseong Kim, Taehyun Byun, Seungyoon Shin, Keunjun Choi, Jaewoon Kwon, Taeyoon Lee, Matthew Pan, Sungjoon Choi,
- Abstract summary: This paper presents the design and development of an innovative interactive robotic system to enhance audience engagement using character-like personas.
Built upon the foundations of persona-driven dialog agents, this work extends the agent's application to the physical realm, employing robots to provide a more captivating and interactive experience.
- Score: 10.351714893090964
- License:
- Abstract: This paper presents the design and development of an innovative interactive robotic system to enhance audience engagement using character-like personas. Built upon the foundations of persona-driven dialog agents, this work extends the agent's application to the physical realm, employing robots to provide a more captivating and interactive experience. The proposed system, named the Masquerading Animated Social Kinematic (MASK), leverages an anthropomorphic robot which interacts with guests using non-verbal interactions, including facial expressions and gestures. A behavior generation system based upon a finite-state machine structure effectively conditions robotic behavior to convey distinct personas. The MASK framework integrates a perception engine, a behavior selection engine, and a comprehensive action library to enable real-time, dynamic interactions with minimal human intervention in behavior design. Throughout the user subject studies, we examined whether the users could recognize the intended character in both personality- and film-character-based persona conditions. We conclude by discussing the role of personas in interactive agents and the factors to consider for creating an engaging user experience.
Related papers
- EMOTION: Expressive Motion Sequence Generation for Humanoid Robots with In-Context Learning [10.266351600604612]
This paper introduces a framework, called EMOTION, for generating expressive motion sequences in humanoid robots.
We conduct online user studies comparing the naturalness and understandability of the motions generated by EMOTION and its human-feedback version, EMOTION++.
arXiv Detail & Related papers (2024-10-30T17:22:45Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
We present ReMoS, a denoising diffusion based model that synthesizes full body motion of a person in two person interaction scenario.
We demonstrate ReMoS across challenging two person scenarios such as pair dancing, Ninjutsu, kickboxing, and acrobatics.
We also contribute the ReMoCap dataset for two person interactions containing full body and finger motions.
arXiv Detail & Related papers (2023-11-28T18:59:52Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
We introduce generative agents--computational software agents that simulate believable human behavior.
We describe an architecture that extends a large language model to store a complete record of the agent's experiences.
We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims.
arXiv Detail & Related papers (2023-04-07T01:55:19Z) - Interaction Replica: Tracking Human-Object Interaction and Scene Changes From Human Motion [48.982957332374866]
Modeling changes caused by humans is essential for building digital twins.
Our method combines visual localization of humans in the scene with contact-based reasoning about human-scene interactions from IMU data.
Our code, data and model are available on our project page at http://virtualhumans.mpi-inf.mpg.de/ireplica/.
arXiv Detail & Related papers (2022-05-05T17:58:06Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - A ROS Architecture for Personalised HRI with a Bartender Social Robot [61.843727637976045]
BRILLO project has the overall goal of creating an autonomous robotic bartender that can interact with customers while accomplishing its bartending tasks.
We present the developed three-layers ROS architecture integrating a perception layer managing the processing of different social signals, a decision-making layer for handling multi-party interactions, and an execution layer controlling the behaviour of a complex robot composed of arms and a face.
arXiv Detail & Related papers (2022-03-13T11:33:06Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
This study demonstrates a multimodal human-robot interaction (HRI) framework with reinforcement learning to enhance the robotic interaction policy.
The goal is to apply this framework in social scenarios that can let the robots generate a more natural and engaging HRI framework.
arXiv Detail & Related papers (2021-10-08T00:35:44Z) - Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions [16.40684407420441]
Collaborative interactions require social robots to adapt to the dynamics of human affective behaviour.
We propose a novel framework for personality-driven behaviour generation in social robots.
arXiv Detail & Related papers (2020-10-14T16:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.