Adaptive Random Feature Regularization on Fine-tuning Deep Neural Networks
- URL: http://arxiv.org/abs/2403.10097v1
- Date: Fri, 15 Mar 2024 08:26:59 GMT
- Title: Adaptive Random Feature Regularization on Fine-tuning Deep Neural Networks
- Authors: Shin'ya Yamaguchi, Sekitoshi Kanai, Kazuki Adachi, Daiki Chijiwa,
- Abstract summary: We propose a simple method called adaptive random feature regularization (AdaRand)
AdaRand helps the feature extractors of training models to adaptively change the distribution of feature vectors for downstream classification tasks without auxiliary source information and with reasonable computation costs.
Our experiments show that AdaRand outperforms the other fine-tuning regularization, which requires auxiliary source information and heavy computation costs.
- Score: 12.992733141210158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While fine-tuning is a de facto standard method for training deep neural networks, it still suffers from overfitting when using small target datasets. Previous methods improve fine-tuning performance by maintaining knowledge of the source datasets or introducing regularization terms such as contrastive loss. However, these methods require auxiliary source information (e.g., source labels or datasets) or heavy additional computations. In this paper, we propose a simple method called adaptive random feature regularization (AdaRand). AdaRand helps the feature extractors of training models to adaptively change the distribution of feature vectors for downstream classification tasks without auxiliary source information and with reasonable computation costs. To this end, AdaRand minimizes the gap between feature vectors and random reference vectors that are sampled from class conditional Gaussian distributions. Furthermore, AdaRand dynamically updates the conditional distribution to follow the currently updated feature extractors and balance the distance between classes in feature spaces. Our experiments show that AdaRand outperforms the other fine-tuning regularization, which requires auxiliary source information and heavy computation costs.
Related papers
- Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
arXiv Detail & Related papers (2023-03-12T02:49:19Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Open-Sampling: Exploring Out-of-Distribution data for Re-balancing
Long-tailed datasets [24.551465814633325]
Deep neural networks usually perform poorly when the training dataset suffers from extreme class imbalance.
Recent studies found that directly training with out-of-distribution data in a semi-supervised manner would harm the generalization performance.
We propose a novel method called Open-sampling, which utilizes open-set noisy labels to re-balance the class priors of the training dataset.
arXiv Detail & Related papers (2022-06-17T14:29:52Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Scalable Vector Gaussian Information Bottleneck [19.21005180893519]
We study a variation of the problem, called scalable information bottleneck, in which the encoder outputs multiple descriptions of the observation.
We derive a variational inference type algorithm for general sources with unknown distribution; and show means of parametrizing it using neural networks.
arXiv Detail & Related papers (2021-02-15T12:51:26Z) - Source-free Domain Adaptation via Distributional Alignment by Matching
Batch Normalization Statistics [85.75352990739154]
We propose a novel domain adaptation method for the source-free setting.
We use batch normalization statistics stored in the pretrained model to approximate the distribution of unobserved source data.
Our method achieves competitive performance with state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-01-19T14:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.