Reliable uncertainty with cheaper neural network ensembles: a case study in industrial parts classification
- URL: http://arxiv.org/abs/2403.10182v1
- Date: Fri, 15 Mar 2024 10:38:48 GMT
- Title: Reliable uncertainty with cheaper neural network ensembles: a case study in industrial parts classification
- Authors: Arthur Thuy, Dries F. Benoit,
- Abstract summary: In operations research (OR), predictive models often encounter out-of-distribution (OOD) scenarios.
Deep ensembles, composed of multiple independent NNs, have emerged as a promising approach.
This study is the first to provide a comprehensive comparison of a single NN, a deep ensemble, and the three efficient NN ensembles.
- Score: 1.104960878651584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In operations research (OR), predictive models often encounter out-of-distribution (OOD) scenarios where the data distribution differs from the training data distribution. In recent years, neural networks (NNs) are gaining traction in OR for their exceptional performance in fields such as image classification. However, NNs tend to make confident yet incorrect predictions when confronted with OOD data. Uncertainty estimation offers a solution to overconfident models, communicating when the output should (not) be trusted. Hence, reliable uncertainty quantification in NNs is crucial in the OR domain. Deep ensembles, composed of multiple independent NNs, have emerged as a promising approach, offering not only strong predictive accuracy but also reliable uncertainty estimation. However, their deployment is challenging due to substantial computational demands. Recent fundamental research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study is the first to provide a comprehensive comparison of a single NN, a deep ensemble, and the three efficient NN ensembles. In addition, we propose a Diversity Quality metric to quantify the ensembles' performance on the in-distribution and OOD sets in one single metric. The OR case study discusses industrial parts classification to identify and manage spare parts, important for timely maintenance of industrial plants. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It outperforms the deep ensemble in both uncertainty and accuracy while exhibiting a training time speedup of 7x, a test time speedup of 8x, and 9x memory savings.
Related papers
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation
in Classification Tasks [5.19656787424626]
Uncertainty estimation is increasingly attractive for improving the reliability of neural networks.
We present novel credal-set interval neural networks (CreINNs) designed for classification tasks.
arXiv Detail & Related papers (2024-01-10T10:04:49Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - A Benchmark on Uncertainty Quantification for Deep Learning Prognostics [0.0]
We assess some of the latest developments in the field of uncertainty quantification for prognostics deep learning.
This includes the state-of-the-art variational inference algorithms for Bayesian neural networks (BNN) as well as popular alternatives such as Monte Carlo Dropout (MCD), deep ensembles (DE) and heteroscedastic neural networks (HNN)
The performance of the methods is evaluated on a subset of the large NASA NCMAPSS dataset for aircraft engines.
arXiv Detail & Related papers (2023-02-09T16:12:47Z) - Improving Uncertainty Quantification of Variance Networks by
Tree-Structured Learning [10.566352737844369]
We propose a novel tree-structured local neural network model that partitions the feature space into multiple regions based on uncertainty heterogeneity.
The proposed Uncertainty-Splitting Neural Regression Tree (USNRT) employs novel splitting criteria.
USNRT or its ensemble shows superior performance compared to some recent popular methods for quantifying uncertainty with variances.
arXiv Detail & Related papers (2022-12-24T05:25:09Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Multidimensional Uncertainty-Aware Evidential Neural Networks [21.716045815385268]
We propose a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-versa (OOD) detection problem.
We took a hybrid approach that combines Wasserstein Generative Adrial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class.
We demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples.
arXiv Detail & Related papers (2020-12-26T04:28:56Z) - Multi-Loss Sub-Ensembles for Accurate Classification with Uncertainty
Estimation [1.2891210250935146]
We propose an efficient method for uncertainty estimation in deep neural networks (DNNs) achieving high accuracy.
We keep our inference time relatively low by leveraging the advantage proposed by the Deep-Sub-Ensembles method.
Our results show improved accuracy on the classification task and competitive results on several uncertainty measures.
arXiv Detail & Related papers (2020-10-05T10:59:11Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.