CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation
in Classification Tasks
- URL: http://arxiv.org/abs/2401.05043v2
- Date: Fri, 2 Feb 2024 21:46:57 GMT
- Title: CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation
in Classification Tasks
- Authors: Kaizheng Wang, Keivan Shariatmadar, Shireen Kudukkil Manchingal, Fabio
Cuzzolin, David Moens, Hans Hallez
- Abstract summary: Uncertainty estimation is increasingly attractive for improving the reliability of neural networks.
We present novel credal-set interval neural networks (CreINNs) designed for classification tasks.
- Score: 5.19656787424626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty estimation is increasingly attractive for improving the
reliability of neural networks. In this work, we present novel credal-set
interval neural networks (CreINNs) designed for classification tasks. CreINNs
preserve the traditional interval neural network structure, capturing weight
uncertainty through deterministic intervals, while forecasting credal sets
using the mathematical framework of probability intervals. Experimental
validations on an out-of-distribution detection benchmark (CIFAR10 vs SVHN)
showcase that CreINNs outperform epistemic uncertainty estimation when compared
to variational Bayesian neural networks (BNNs) and deep ensembles (DEs).
Furthermore, CreINNs exhibit a notable reduction in computational complexity
compared to variational BNNs and demonstrate smaller model sizes than DEs.
Related papers
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Random-Set Neural Networks (RS-NN) [4.549947259731147]
We propose a novel Random-Set Neural Network (RS-NN) for classification.
RS-NN predicts belief functions rather than probability vectors over a set of classes.
It encodes the 'epistemic' uncertainty induced in machine learning by limited training sets.
arXiv Detail & Related papers (2023-07-11T20:00:35Z) - A New PHO-rmula for Improved Performance of Semi-Structured Networks [0.0]
We show that techniques to properly identify the contributions of the different model components in SSNs lead to suboptimal network estimation.
We propose a non-invasive post-hocization (PHO) that guarantees identifiability of model components and provides better estimation and prediction quality.
Our theoretical findings are supported by numerical experiments, a benchmark comparison as well as a real-world application to COVID-19 infections.
arXiv Detail & Related papers (2023-06-01T10:23:28Z) - Improving Uncertainty Quantification of Variance Networks by
Tree-Structured Learning [10.566352737844369]
We propose a novel tree-structured local neural network model that partitions the feature space into multiple regions based on uncertainty heterogeneity.
The proposed Uncertainty-Splitting Neural Regression Tree (USNRT) employs novel splitting criteria.
USNRT or its ensemble shows superior performance compared to some recent popular methods for quantifying uncertainty with variances.
arXiv Detail & Related papers (2022-12-24T05:25:09Z) - An out-of-distribution discriminator based on Bayesian neural network
epistemic uncertainty [0.19573380763700712]
Bayesian neural networks (BNNs) are an important type of neural network with built-in capability for quantifying uncertainty.
This paper discusses aleatoric and epistemic uncertainty in BNNs and how they can be calculated.
arXiv Detail & Related papers (2022-10-18T21:15:33Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
We instantiate this design on convolutional neural networks (CNNs)
In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
arXiv Detail & Related papers (2020-07-17T19:32:48Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z) - Interval Neural Networks: Uncertainty Scores [11.74565957328407]
We propose a fast, non-Bayesian method for producing uncertainty scores in the output of pre-trained deep neural networks (DNNs)
This interval neural network (INN) has interval valued parameters and propagates its input using interval arithmetic.
In numerical experiments on an image reconstruction task, we demonstrate the practical utility of INNs as a proxy for the prediction error.
arXiv Detail & Related papers (2020-03-25T18:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.