Perceptual Quality-based Model Training under Annotator Label Uncertainty
- URL: http://arxiv.org/abs/2403.10190v1
- Date: Fri, 15 Mar 2024 10:52:18 GMT
- Title: Perceptual Quality-based Model Training under Annotator Label Uncertainty
- Authors: Chen Zhou, Mohit Prabhushankar, Ghassan AlRegib,
- Abstract summary: Annotators exhibit disagreement during data labeling, which can be termed as annotator label uncertainty.
We introduce a novel perceptual quality-based model training framework to objectively generate multiple labels for model training.
- Score: 15.015925663078377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Annotators exhibit disagreement during data labeling, which can be termed as annotator label uncertainty. Annotator label uncertainty manifests in variations of labeling quality. Training with a single low-quality annotation per sample induces model reliability degradations. In this work, we first examine the effects of annotator label uncertainty in terms of the model's generalizability and prediction uncertainty. We observe that the model's generalizability and prediction uncertainty degrade with the presence of low-quality noisy labels. Meanwhile, our evaluation of existing uncertainty estimation algorithms indicates their incapability in response to annotator label uncertainty. To mitigate performance degradation, prior methods show that training models with labels collected from multiple independent annotators can enhance generalizability. However, they require massive annotations. Hence, we introduce a novel perceptual quality-based model training framework to objectively generate multiple labels for model training to enhance reliability, while avoiding massive annotations. Specifically, we first select a subset of samples with low perceptual quality scores ranked by statistical regularities of visual signals. We then assign de-aggregated labels to each sample in this subset to obtain a training set with multiple labels. Our experiments and analysis demonstrate that training with the proposed framework alleviates the degradation of generalizability and prediction uncertainty caused by annotator label uncertainty.
Related papers
- Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning [41.345794038968776]
We propose to leverage reduction-based pseudo-labels to alleviate the influence of incorrect candidate labels.
We show that reduction-based pseudo-labels exhibit greater consistency with the Bayes optimal classifier compared to pseudo-labels directly generated from the predictive model.
arXiv Detail & Related papers (2024-10-28T07:32:20Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Label Noise in Adversarial Training: A Novel Perspective to Study Robust
Overfitting [45.58217741522973]
We show that label noise exists in adversarial training.
Such label noise is due to the mismatch between the true label distribution of adversarial examples and the label inherited from clean examples.
We propose a method to automatically calibrate the label to address the label noise and robust overfitting.
arXiv Detail & Related papers (2021-10-07T01:15:06Z) - Incorporating Label Uncertainty in Understanding Adversarial Robustness [17.65850501514483]
We show that error regions induced by state-of-the-art models tend to have much higher label uncertainty compared with randomly-selected subsets.
This observation motivates us to adapt a concentration estimation algorithm to account for label uncertainty.
arXiv Detail & Related papers (2021-07-07T14:26:57Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.