Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
- URL: http://arxiv.org/abs/2504.17474v1
- Date: Thu, 24 Apr 2025 12:07:14 GMT
- Title: Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
- Authors: Weiran Pan, Wei Wei, Feida Zhu, Yong Deng,
- Abstract summary: We propose a novel sample selection method for image classification in the presence of noisy labels.<n>Our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones.<n>Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques.
- Score: 18.111971239860836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel sample selection method for image classification in the presence of noisy labels. Existing methods typically consider small-loss samples as correctly labeled. However, some correctly labeled samples are inherently difficult for the model to learn and can exhibit high loss similar to mislabeled samples in the early stages of training. Consequently, setting a threshold on per-sample loss to select correct labels results in a trade-off between precision and recall in sample selection: a lower threshold may miss many correctly labeled hard-to-learn samples (low recall), while a higher threshold may include many mislabeled samples (low precision). To address this issue, our goal is to accurately distinguish correctly labeled yet hard-to-learn samples from mislabeled ones, thus alleviating the trade-off dilemma. We achieve this by considering the trends in model prediction confidence rather than relying solely on loss values. Empirical observations show that only for correctly labeled samples, the model's prediction confidence for the annotated labels typically increases faster than for any other classes. Based on this insight, we propose tracking the confidence gaps between the annotated labels and other classes during training and evaluating their trends using the Mann-Kendall Test. A sample is considered potentially correctly labeled if all its confidence gaps tend to increase. Our method functions as a plug-and-play component that can be seamlessly integrated into existing sample selection techniques. Experiments on several standard benchmarks and real-world datasets demonstrate that our method enhances the performance of existing methods for learning with noisy labels.
Related papers
- Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
In supervised machine learning, models are typically trained using data with hard labels, i.e., definite assignments of class membership.
We investigate whether incorporating label uncertainty, represented as discrete probability distributions over the class labels, improves the predictive performance of classification models.
arXiv Detail & Related papers (2024-09-24T13:12:29Z) - Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification [6.920336485308536]
Pseudo-labeling-based semi-supervised approaches suffer from two problems in image classification.
We develop a self adaptive threshold pseudo-labeling strategy, which thresholds for each class can be dynamically adjusted to increase the number of reliable samples.
In order to effectively utilise unlabeled data with confidence below the thresholds, we propose an unreliable sample contrastive loss.
arXiv Detail & Related papers (2024-07-04T03:04:56Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - LOPS: Learning Order Inspired Pseudo-Label Selection for Weakly
Supervised Text Classification [28.37907856670151]
Pseudo-labels are noisy due to their nature, so selecting the correct ones has a huge potential for performance boost.
We propose a novel pseudo-label selection method LOPS that memorize takes learning order of samples into consideration.
LOPS can be viewed as a strong performance-boost plug-in to most of existing weakly-supervised text classification methods.
arXiv Detail & Related papers (2022-05-25T06:46:48Z) - An analysis of over-sampling labeled data in semi-supervised learning
with FixMatch [66.34968300128631]
Most semi-supervised learning methods over-sample labeled data when constructing training mini-batches.
This paper studies whether this common practice improves learning and how.
We compare it to an alternative setting where each mini-batch is uniformly sampled from all the training data, labeled or not.
arXiv Detail & Related papers (2022-01-03T12:22:26Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Confidence Adaptive Regularization for Deep Learning with Noisy Labels [2.0349696181833337]
Recent studies on the memorization effects of deep neural networks on noisy labels show that the networks first fit the correctly-labeled training samples before memorizing the mislabeled samples.
Motivated by this early-learning phenomenon, we propose a novel method to prevent memorization of the mislabeled samples.
We provide the theoretical analysis and conduct the experiments on synthetic and real-world datasets, demonstrating that our approach achieves comparable results to the state-of-the-art methods.
arXiv Detail & Related papers (2021-08-18T15:51:25Z) - Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised
Learning [27.258077365554474]
We revisit the idea of pseudo-labeling in the context of semi-supervised learning.
Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set.
We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples.
arXiv Detail & Related papers (2020-01-16T03:24:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.