論文の概要: Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2403.10231v1
- Date: Fri, 15 Mar 2024 12:00:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:20:54.849147
- Title: Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs
- Title(参考訳): より少ないもの:大規模知識グラフのワンショットサブグラフ推論
- Authors: Zhanke Zhou, Yongqi Zhang, Jiangchao Yao, Quanming Yao, Bo Han,
- Abstract要約: 効率的かつ適応的な予測を実現するために,ワンショットサブグラフリンク予測を提案する。
設計原理は、KG全体に直接作用する代わりに、予測手順を2つのステップに分離する。
5つの大規模ベンチマークにおいて,効率の向上と性能の向上を実現している。
- 参考スコア(独自算出の注目度): 49.547988001231424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To deduce new facts on a knowledge graph (KG), a link predictor learns from the graph structure and collects local evidence to find the answer to a given query. However, existing methods suffer from a severe scalability problem due to the utilization of the whole KG for prediction, which hinders their promise on large scale KGs and cannot be directly addressed by vanilla sampling methods. In this work, we propose the one-shot-subgraph link prediction to achieve efficient and adaptive prediction. The design principle is that, instead of directly acting on the whole KG, the prediction procedure is decoupled into two steps, i.e., (i) extracting only one subgraph according to the query and (ii) predicting on this single, query dependent subgraph. We reveal that the non-parametric and computation-efficient heuristics Personalized PageRank (PPR) can effectively identify the potential answers and supporting evidence. With efficient subgraph-based prediction, we further introduce the automated searching of the optimal configurations in both data and model spaces. Empirically, we achieve promoted efficiency and leading performances on five large-scale benchmarks. The code is publicly available at: https://github.com/tmlr-group/one-shot-subgraph.
- Abstract(参考訳): リンク予測器は、知識グラフ(KG)上で新たな事実を推論し、グラフ構造から学習し、局所的な証拠を収集して、与えられたクエリに対する回答を求める。
しかし,既存の手法は,大規模なKGへの期待を妨げ,バニラサンプリング法では直接対応できないような,KG全体の予測利用によるスケーラビリティの深刻な問題に悩まされている。
本研究では,効率的な適応予測を実現するために,ワンショットサブグラフリンク予測を提案する。
設計原理は、KG全体に直接作用する代わりに、予測手順を2つのステップ、すなわち2つのステップに分離するものである。
i)クエリに従って1つのサブグラフのみを抽出し、
(ii)この単一のクエリ依存サブグラフに基づいて予測する。
PPR(Personized PageRank)は,非パラメトリックかつ計算効率の高いヒューリスティックスであり,潜在的回答を効果的に識別し,証拠を裏付ける。
さらに,データ空間とモデル空間の両方において最適な構成の自動探索を導入する。
実験により,5つの大規模ベンチマークにおいて,高速化と先行性能を実現した。
コードはhttps://github.com/tmlr-group/one-shot-subgraph.comで公開されている。
関連論文リスト
- Deep Generative Models for Subgraph Prediction [10.56335881963895]
本稿では,深層グラフ学習のための新しい課題として,サブグラフクエリを提案する。
サブグラフクエリは、観測されたサブグラフで表される証拠に基づいて、ターゲットサブグラフのコンポーネントを共同で予測する。
我々は,確率論的深部グラフ生成モデルを用いて,サブグラフクエリに回答する。
論文 参考訳(メタデータ) (2024-08-07T19:24:02Z) - Learning Large Graph Property Prediction via Graph Segment Training [61.344814074335304]
本稿では,メモリフットプリントを一定にして大きなグラフ特性予測を学習できる汎用フレームワークを提案する。
バックプロパゲーションのためにサンプリングされていないセグメントに対する埋め込みを効率的に得るために,歴史的埋め込みテーブルを導入することにより,GSTパラダイムを洗練する。
実験の結果,GST-EFDはメモリ効率が良く,高速でありながら,通常の全グラフ学習システムよりもテスト精度が若干向上していることがわかった。
論文 参考訳(メタデータ) (2023-05-21T02:53:25Z) - Sampling Enclosing Subgraphs for Link Prediction [2.1270496914042996]
リンク予測はグラフ構造化データ計算の基本的な問題である。
本稿では,スパース囲み部分グラフを用いて予測を行うScaLedというスケーラブルな解を提案する。
より小さなサンプルサブグラフを活用することで、ScaLedは高い精度を維持しながらオーバーヘッドをはるかに少なく大きなグラフにスケールすることができる。
論文 参考訳(メタデータ) (2022-06-23T22:48:44Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Ensembling Graph Predictions for AMR Parsing [28.625065956013778]
多くの機械学習タスクでは、モデルはグラフのような構造データを予測するために訓練される。
本研究では,この問題を,グラフ予測の収集によって最も支持される最大のグラフのマイニングとして定式化する。
提案手法は、最先端のAMRの強度を組み合わせることで、5つの標準ベンチマークデータセットのどのモデルよりも精度の高い新しい予測を作成できることを示す。
論文 参考訳(メタデータ) (2021-10-18T09:35:39Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - G2MF-WA: Geometric Multi-Model Fitting with Weakly Annotated Data [15.499276649167975]
弱いアノテーションでは、ほとんどの手動アノテーションは正しくなければならないが、必然的に間違ったアノテーションと混同されている。
本稿では,WAデータを完全に活用してマルチモデル適合性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2020-01-20T04:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。