GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting
- URL: http://arxiv.org/abs/2403.10242v2
- Date: Thu, 31 Oct 2024 02:13:15 GMT
- Title: GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting
- Authors: Qijun Feng, Zhen Xing, Zuxuan Wu, Yu-Gang Jiang,
- Abstract summary: We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
- Score: 81.03553265684184
- License:
- Abstract: We introduce GeoGS3D, a novel two-stage framework for reconstructing detailed 3D objects from single-view images. Inspired by the success of pre-trained 2D diffusion models, our method incorporates an orthogonal plane decomposition mechanism to extract 3D geometric features from the 2D input, facilitating the generation of multi-view consistent images. During the following Gaussian Splatting, these images are fused with epipolar attention, fully utilizing the geometric correlations across views. Moreover, we propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization, significantly accelerating the reconstruction process. Extensive experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects, both qualitatively and quantitatively.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - 3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images [6.076999957937232]
We propose a novel 3DGS-based method for large-scale surface reconstruction using aerial multi-view stereo (MVS) images, named Aerial Gaussian Splatting (AGS)
First, we introduce a data chunking method tailored for large-scale aerial images, making 3DGS feasible for surface reconstruction over extensive scenes.
Second, we integrate the Ray-Gaussian Intersection method into 3DGS to obtain depth and normal information.
arXiv Detail & Related papers (2024-08-31T08:17:24Z) - Large Point-to-Gaussian Model for Image-to-3D Generation [48.95861051703273]
We propose a large Point-to-Gaussian model, that inputs the initial point cloud produced from large 3D diffusion model conditional on 2D image.
The point cloud provides initial 3D geometry prior for Gaussian generation, thus significantly facilitating image-to-3D Generation.
arXiv Detail & Related papers (2024-08-20T15:17:53Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking.
We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images.
We demonstrate that our differentiable terms allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.
arXiv Detail & Related papers (2024-03-26T17:21:24Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.