3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images
- URL: http://arxiv.org/abs/2409.00381v3
- Date: Mon, 23 Sep 2024 05:07:08 GMT
- Title: 3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images
- Authors: YuanZheng Wu, Jin Liu, Shunping Ji,
- Abstract summary: We propose a novel 3DGS-based method for large-scale surface reconstruction using aerial multi-view stereo (MVS) images, named Aerial Gaussian Splatting (AGS)
First, we introduce a data chunking method tailored for large-scale aerial images, making 3DGS feasible for surface reconstruction over extensive scenes.
Second, we integrate the Ray-Gaussian Intersection method into 3DGS to obtain depth and normal information.
- Score: 6.076999957937232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, 3D Gaussian Splatting (3DGS) has demonstrated excellent ability in small-scale 3D surface reconstruction. However, extending 3DGS to large-scale scenes remains a significant challenge. To address this gap, we propose a novel 3DGS-based method for large-scale surface reconstruction using aerial multi-view stereo (MVS) images, named Aerial Gaussian Splatting (AGS). First, we introduce a data chunking method tailored for large-scale aerial images, making 3DGS feasible for surface reconstruction over extensive scenes. Second, we integrate the Ray-Gaussian Intersection method into 3DGS to obtain depth and normal information. Finally, we implement multi-view geometric consistency constraints to enhance the geometric consistency across different views. Our experiments on multiple datasets demonstrate, for the first time, the 3DGS-based method can match conventional aerial MVS methods on geometric accuracy in aerial large-scale surface reconstruction, and our method also beats state-of-the-art GS-based methods both on geometry and rendering quality.
Related papers
- GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel hybrid representation that augments 3DGS with explicit geometric guidance and differentiable PBR equations.
Comprehensive evaluations across diverse datasets demonstrate the superiority of GeoSplatting.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) has shown promising performance in novel view synthesis.
We make the first attempt to tackle the challenging task of large-scale scene surface reconstruction.
We propose GigaGS, the first work for high-quality surface reconstruction for large-scale scenes using 3DGS.
arXiv Detail & Related papers (2024-09-10T17:51:39Z) - PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
We propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction.
We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy.
Our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
arXiv Detail & Related papers (2024-06-10T17:59:01Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.