Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models
- URL: http://arxiv.org/abs/2403.10258v3
- Date: Mon, 21 Apr 2025 12:52:49 GMT
- Title: Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models
- Authors: Chaoqun Liu, Wenxuan Zhang, Yiran Zhao, Anh Tuan Luu, Lidong Bing,
- Abstract summary: Large language models (LLMs) have demonstrated multilingual capabilities, yet they are mostly English-centric due to imbalanced training corpora.<n>We extend the evaluation to real-world user queries and non-English-centric LLMs, offering a broader examination of multilingual performance.
- Score: 79.46179534911019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated multilingual capabilities, yet they are mostly English-centric due to the imbalanced training corpora. While prior works have leveraged this bias to enhance multilingual performance through translation, they have been largely limited to natural language processing (NLP) tasks. In this work, we extend the evaluation to real-world user queries and non-English-centric LLMs, offering a broader examination of multilingual performance. Our key contribution lies in demonstrating that while translation into English can boost the performance of English-centric LLMs on NLP tasks, it is not universally optimal. For culture-related tasks that need deep language understanding, prompting in the native language proves more effective as it better captures the nuances of culture and language. Our experiments expose varied behaviors across LLMs and tasks in the multilingual context, underscoring the need for a more comprehensive approach to multilingual evaluation. Therefore, we call for greater efforts in developing and evaluating LLMs that go beyond English-centric paradigms.
Related papers
- Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
We present a novel and simple yet effective method called textbfDictionary textbfInsertion textbfPrompting (textbfDIP)
When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs.
It then enables better translation into English and better English model thinking steps which leads to obviously better results.
arXiv Detail & Related papers (2024-11-02T05:10:50Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - LLM for Everyone: Representing the Underrepresented in Large Language Models [21.07409393578553]
This thesis aims to bridge the gap in NLP research and development by focusing on underrepresented languages.
A comprehensive evaluation of large language models (LLMs) is conducted to assess their capabilities in these languages.
The proposed solutions cover cross-lingual continual instruction tuning, retrieval-based cross-lingual in-context learning, and in-context query alignment.
arXiv Detail & Related papers (2024-09-20T20:53:22Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks.
This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks.
arXiv Detail & Related papers (2024-02-28T15:15:39Z) - Turning English-centric LLMs Into Polyglots: How Much Multilinguality Is Needed? [40.13166574854085]
We investigate the minimal amount of multilinguality required to elicit cross-lingual generalisation in English-centric large language models.
We find that multilingual instruction tuning with as few as two to three languages is both necessary and sufficient to elicit effective cross-lingual generalisation.
arXiv Detail & Related papers (2023-12-20T00:49:52Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
Large Language Models (LLMs) often show strong performance on English tasks, while exhibiting limitations on other languages.
This study endeavors to examine the multilingual capability of LLMs from the vocabulary sharing perspective.
arXiv Detail & Related papers (2023-11-15T16:13:14Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
Large-scale Pretrained Language Models (LLMs) have shown strong abilities in multilingual translations.
We present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation.
arXiv Detail & Related papers (2023-05-24T12:00:24Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
Large Language Models (LLMs) have demonstrated exceptional natural language understanding abilities.
We propose a systematic way of qualifying the performance disparities of LLMs under multilingual settings.
The results show that GPT exhibits highly translating-like behaviour in multilingual settings.
arXiv Detail & Related papers (2023-05-24T02:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.