Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models
- URL: http://arxiv.org/abs/2402.18397v1
- Date: Wed, 28 Feb 2024 15:15:39 GMT
- Title: Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models
- Authors: Ercong Nie, Shuzhou Yuan, Bolei Ma, Helmut Schmid, Michael F\"arber,
Frauke Kreuter, Hinrich Sch\"utze
- Abstract summary: English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks.
This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks.
- Score: 12.700783525558721
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the predominance of English in their training data, English-centric
Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability
to perform multilingual tasks, raising questions about the depth and nature of
their cross-lingual capabilities. This paper introduces the decomposed
prompting approach to probe the linguistic structure understanding of these
LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt,
our method generates for each token of the input sentence an individual prompt
which asks for its linguistic label. We assess our method on the Universal
Dependencies part-of-speech tagging dataset for 38 languages, utilizing both
English-centric and multilingual LLMs. Our findings show that decomposed
prompting surpasses the iterative prompting baseline in efficacy and efficiency
under zero- and few-shot settings. Further analysis reveals the influence of
evaluation methods and the use of instructions in prompts. Our multilingual
investigation shows that English-centric language models perform better on
average than multilingual models. Our study offers insights into the
multilingual transferability of English-centric LLMs, contributing to the
understanding of their multilingual linguistic knowledge.
Related papers
- Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs [13.458891794688551]
We evaluate pre-translation strategies across 35 languages covering both low and high-resource languages.
Our experiments show the impact of factors as similarity to English, translation quality and the size of pre-trained data, on the model performance with pre-translation.
arXiv Detail & Related papers (2025-02-13T13:49:30Z) - How does a Multilingual LM Handle Multiple Languages? [0.0]
This study critically examines capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer.
It assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity.
It examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures.
arXiv Detail & Related papers (2025-02-06T18:08:14Z) - How Do Multilingual Language Models Remember Facts? [50.13632788453612]
We show that previously identified recall mechanisms in English largely apply to multilingual contexts.
We localize the role of language during recall, finding that subject enrichment is language-independent.
In decoder-only LLMs, FVs compose these two pieces of information in two separate stages.
arXiv Detail & Related papers (2024-10-18T11:39:34Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
We aim to create a multilingual ALT system with available datasets.
Inspired by architectures that have been proven effective for English ALT, we adapt these techniques to the multilingual scenario.
We evaluate the performance of the multilingual model in comparison to its monolingual counterparts.
arXiv Detail & Related papers (2024-06-25T15:02:32Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
Large language models (LLMs) have demonstrated multilingual capabilities; yet, they are mostly English-centric due to imbalanced training corpora.
This work extends the evaluation from NLP tasks to real user queries.
For culture-related tasks that need deep language understanding, prompting in the native language tends to be more promising.
arXiv Detail & Related papers (2024-03-15T12:47:39Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
Large Language Models (LLMs) often show strong performance on English tasks, while exhibiting limitations on other languages.
This study endeavors to examine the multilingual capability of LLMs from the vocabulary sharing perspective.
arXiv Detail & Related papers (2023-11-15T16:13:14Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.