論文の概要: Comprehensive Study Of Predictive Maintenance In Industries Using Classification Models And LSTM Model
- arxiv url: http://arxiv.org/abs/2403.10259v1
- Date: Fri, 15 Mar 2024 12:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:11:11.125827
- Title: Comprehensive Study Of Predictive Maintenance In Industries Using Classification Models And LSTM Model
- Title(参考訳): 分類モデルとLSTMモデルを用いた産業における予測保守の総合的研究
- Authors: Saket Maheshwari, Sambhav Tiwari, Shyam Rai, Satyam Vinayak Daman Pratap Singh,
- Abstract要約: この研究は、SVM(Support Vector Machine)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、畳み込みニューラルネットワークLSTMベース(Convolutional Neural Network LSTM-based)など、さまざまな機械学習分類手法を掘り下げて、マシンのパフォーマンスを予測し分析することを目的としている。
本研究の主な目的は、精度、精度、リコール、F1スコアなどの要因を考慮して、これらのアルゴリズムの性能を評価し、機械性能を予測・解析することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In today's technology-driven era, the imperative for predictive maintenance and advanced diagnostics extends beyond aviation to encompass the identification of damages, failures, and operational defects in rotating and moving machines. Implementing such services not only curtails maintenance costs but also extends machine lifespan, ensuring heightened operational efficiency. Moreover, it serves as a preventive measure against potential accidents or catastrophic events. The advent of Artificial Intelligence (AI) has revolutionized maintenance across industries, enabling more accurate and efficient prediction and analysis of machine failures, thereby conserving time and resources. Our proposed study aims to delve into various machine learning classification techniques, including Support Vector Machine (SVM), Random Forest, Logistic Regression, and Convolutional Neural Network LSTM-Based, for predicting and analyzing machine performance. SVM classifies data into different categories based on their positions in a multidimensional space, while Random Forest employs ensemble learning to create multiple decision trees for classification. Logistic Regression predicts the probability of binary outcomes using input data. The primary objective of the study is to assess these algorithms' performance in predicting and analyzing machine performance, considering factors such as accuracy, precision, recall, and F1 score. The findings will aid maintenance experts in selecting the most suitable machine learning algorithm for effective prediction and analysis of machine performance.
- Abstract(参考訳): 今日の技術主導の時代には、予測的メンテナンスと高度な診断の義務は航空機を超えて、回転および移動機械の損傷、故障、運用上の欠陥の特定にまで及んでいる。
このようなサービスを実装することで、メンテナンスコストを削減できるだけでなく、マシン寿命を延長し、運用効率を高めることができる。
さらに、潜在的な事故や破滅的な出来事に対する予防措置として機能する。
人工知能(AI)の出現は、業界全体のメンテナンスに革命をもたらし、マシン障害のより正確で効率的な予測と分析を可能にし、時間とリソースの保存を可能にした。
本研究では,SVM(Support Vector Machine),ランダムフォレスト(Random Forest),ロジスティック回帰(Logistic Regression),畳み込みニューラルネットワークLSTM(Convolutional Neural Network LSTM-based)など,機械学習のさまざまな分類手法を探索し,マシン性能を予測・解析することを目的とする。
SVMはデータを多次元空間における位置に基づいて異なるカテゴリに分類する一方、ランダムフォレストは複数の決定木を作成するためにアンサンブル学習を使用している。
ロジスティック回帰は、入力データを用いてバイナリ結果の確率を予測する。
本研究の主な目的は、精度、精度、リコール、F1スコアなどの要因を考慮して、これらのアルゴリズムの性能を評価し、機械性能を予測・解析することである。
この発見は、マシン性能の効果的な予測と分析に最適な機械学習アルゴリズムを選択する上で、メンテナンスの専門家を支援する。
関連論文リスト
- Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - Design & Implementation of Automatic Machine Condition Monitoring and
Maintenance System in Limited Resource Situations [0.0]
第4次産業革命の時代には,機械の故障検出と診断の自動化が不可欠である。
一部の機械の健康モニタリングシステムは世界中で使用されているが、高価であり、操作と分析のために訓練された人員を必要としている。
発展途上国では、インフラの不十分、熟練した人材の不足、金融危機などの理由から、予測的保守と労働安全文化は利用できない。
論文 参考訳(メタデータ) (2024-01-22T08:06:04Z) - Active Inference on the Edge: A Design Study [5.815300670677979]
アクティブ推論(アクティブ推論、英: Active Inference、ACI)とは、脳が知覚情報を常に予測し評価し、長期的サプライズを減らす方法を記述する神経科学の概念である。
我々は,ACIエージェントが要求を満たすことなく,最適化問題を迅速かつ追跡的に解決できたことを示す。
論文 参考訳(メタデータ) (2023-11-17T16:03:04Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - An Explainable Regression Framework for Predicting Remaining Useful Life
of Machines [6.374451442486538]
本稿では,機械の残留実用寿命(RUL)予測のための説明可能な回帰フレームワークを提案する。
また、古典的およびニューラルネットワーク(NN)に基づくタスクのためのソリューションを含む機械学習(ML)アルゴリズムを評価した。
論文 参考訳(メタデータ) (2022-04-28T15:44:12Z) - A two-level machine learning framework for predictive maintenance:
comparison of learning formulations [0.0]
本稿では,2段階のフレームワークにおいて,予測保守のための異なる定式化を設計・比較することを目的とする。
最初のレベルは、学習アルゴリズムを使って特徴を集約することで、健康指標を構築する責任がある。
第2のレベルは、この健康指標に基づいてアラームをトリガーできる意思決定システムで構成されている。
論文 参考訳(メタデータ) (2022-04-21T13:24:28Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
未計画の設備停止のリスクは、収益発生資産の予測保守によって最小化することができる。
機器に基づくセンサネットワークのコンテキストから予測機器のメンテナンスを行うために,モデルフリーのDeep Reinforcement Learningアルゴリズムを提案する。
従来のブラックボックス回帰モデルとは異なり、提案アルゴリズムは最適なメンテナンスポリシーを自己学習し、各機器に対して実行可能なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2020-07-07T10:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。