Deep Learning for Multi-Level Detection and Localization of Myocardial Scars Based on Regional Strain Validated on Virtual Patients
- URL: http://arxiv.org/abs/2403.10291v1
- Date: Fri, 15 Mar 2024 13:31:33 GMT
- Title: Deep Learning for Multi-Level Detection and Localization of Myocardial Scars Based on Regional Strain Validated on Virtual Patients
- Authors: Müjde Akdeniz, Claudia Alessandra Manetti, Tijmen Koopsen, Hani Nozari Mirar, Sten Roar Snare, Svein Arne Aase, Joost Lumens, Jurica Šprem, Kristin Sarah McLeod,
- Abstract summary: We propose a single framework to predict myocardial disease substrates at global, territorial, and segmental levels.
An anatomically meaningful representation of the input data from the clinically standard bullseye representation to a multi-channel 2D image is proposed.
A Fully Convolutional Network (FCN) is trained to detect and localize myocardial scar from regional left ventricular (LV) strain patterns.
- Score: 0.14980193397844668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How well the heart is functioning can be quantified through measurements of myocardial deformation via echocardiography. Clinical assessment of cardiac function is generally focused on global indices of relative shortening, however, territorial, and segmental strain indices have shown to be abnormal in regions of myocardial disease, such as scar. In this work, we propose a single framework to predict myocardial disease substrates at global, territorial, and segmental levels using regional myocardial strain traces as input to a convolutional neural network (CNN)-based classification algorithm. An anatomically meaningful representation of the input data from the clinically standard bullseye representation to a multi-channel 2D image is proposed, to formulate the task as an image classification problem, thus enabling the use of state-of-the-art neural network configurations. A Fully Convolutional Network (FCN) is trained to detect and localize myocardial scar from regional left ventricular (LV) strain patterns. Simulated regional strain data from a controlled dataset of virtual patients with varying degrees and locations of myocardial scar is used for training and validation. The proposed method successfully detects and localizes the scars on 98% of the 5490 left ventricle (LV) segments of the 305 patients in the test set using strain traces only. Due to the sparse existence of scar, only 10% of the LV segments in the virtual patient cohort have scar. Taking the imbalance into account, the class balanced accuracy is calculated as 95%. The performance is reported on global, territorial, and segmental levels. The proposed method proves successful on the strain traces of the virtual cohort and offers the potential to solve the regional myocardial scar detection problem on the strain traces of the real patient cohorts.
Related papers
- Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
Histologic remission is a new therapeutic target in ulcerative colitis (UC)
Endocytoscopy (EC) is a novel ultra-high magnification endoscopic technique.
We propose a neural network model that can assess histological disease activity in EC images.
arXiv Detail & Related papers (2023-08-28T15:54:14Z) - Error correcting 2D-3D cascaded network for myocardial infarct scar
segmentation on late gadolinium enhancement cardiac magnetic resonance images [0.0]
We propose a cascaded framework of two-dimensional and three-dimensional convolutional neural networks (CNNs) which enables to calculate the extent of myocardial infarction in a fully automated way.
The proposed method was trained and evaluated in a five-fold cross validation using the training dataset from the EMIDEC challenge.
arXiv Detail & Related papers (2023-06-26T14:21:18Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Shape constrained CNN for segmentation guided prediction of myocardial
shape and pose parameters in cardiac MRI [0.6445605125467573]
We use a CNN to predict shape parameters of an underlying statistical shape model of the myocardium.
The integrated shape model regularizes the predicted contours and guarantees realistic shapes.
We show the benefits of simultaneous semantic segmentation and the two newly defined loss functions for the prediction of shape parameters.
arXiv Detail & Related papers (2022-03-02T13:20:30Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Automatic segmentation with detection of local segmentation failures in
cardiac MRI [1.281734910003263]
Three state-of-the-art convolutional neural networks (CNN) were trained to automatically segment cardiac anatomical structures.
Using publicly available CMR scans from the MICCAI 2017 ACDC challenge, the impact of CNN architecture and loss function for segmentation was investigated.
Experiments reveal that combining automatic segmentation with simulated manual correction of detected segmentation failures leads to statistically significant performance increase.
arXiv Detail & Related papers (2020-11-13T17:19:05Z) - Automatic Myocardial Infarction Evaluation from Delayed-Enhancement
Cardiac MRI using Deep Convolutional Networks [8.544381926074971]
We propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI)
It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity.
The second task is to automatically classify a given case into normal or pathological from clinical information with or without DE-MRI.
arXiv Detail & Related papers (2020-10-30T11:18:25Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Shape Constrained CNN for Cardiac MR Segmentation with Simultaneous
Prediction of Shape and Pose Parameters [0.5249805590164902]
We perform LV and myocardial segmentation by regression of pose and shape parameters derived from a statistical shape model.
We enforce robustness of shape and pose prediction by simultaneously constructing a segmentation distance map during training.
The method was validated on the LVQuan18 and LVQuan19 public datasets and achieved state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T09:51:04Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.