Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
- URL: http://arxiv.org/abs/2504.13391v1
- Date: Fri, 18 Apr 2025 00:54:30 GMT
- Title: Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
- Authors: Racheal Mukisa, Arvind K. Bansal,
- Abstract summary: Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders.<n>We present a model to improve semantic segmentation of cardiac images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
Related papers
- Multi-Stage Segmentation and Cascade Classification Methods for Improving Cardiac MRI Analysis [15.236546465767026]
We introduce a novel deep learning-based approach to segmentation and classification of cardiac magnetic resonance images.<n>The method improved segmentation accuracy, achieving a Dice coefficient of 0.974 for the left ventricle and 0.947 for the right ventricle.<n>For classification, a cascade of deep learning classifiers was employed to distinguish heart conditions, including hypertrophic cardiomyopathy, myocardial infarction, and dilated cardiomyopathy.
arXiv Detail & Related papers (2024-12-12T15:53:14Z) - Classification, Regression and Segmentation directly from k-Space in Cardiac MRI [11.690226907936903]
We propose KMAE, a Transformer-based model specifically designed to process k-space data directly.
KMAE can handle critical cardiac disease classification, relevant phenotype regression, and cardiac segmentation tasks.
We utilize this model to investigate the potential of k-space-based diagnosis in cardiac MRI.
arXiv Detail & Related papers (2024-07-29T15:35:35Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - Shape of my heart: Cardiac models through learned signed distance functions [33.29148402516714]
In this work, the cardiac shape is reconstructed by means of three-dimensional deep signed distance functions with Lipschitz regularity.
For this purpose, the shapes of cardiac MRI reconstructions are learned to model the spatial relation of multiple chambers.
We demonstrate that this approach is also capable of reconstructing anatomical models from partial data, such as point clouds from a single ventricle.
arXiv Detail & Related papers (2023-08-31T09:02:53Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - A Comprehensive 3-D Framework for Automatic Quantification of Late
Gadolinium Enhanced Cardiac Magnetic Resonance Images [5.947543669357994]
Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) can directly visualize nonviable myocardium with hyperenhanced intensities.
For heart attack patients, it is crucial to facilitate the decision of appropriate therapy by analyzing and quantifying their LGE CMR images.
To achieve accurate quantification, LGE CMR images need to be processed in two steps: segmentation of the myocardium followed by classification of infarcts.
arXiv Detail & Related papers (2022-05-21T11:54:39Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - CNN-based Cardiac Motion Extraction to Generate Deformable Geometric
Left Ventricle Myocardial Models from Cine MRI [0.0]
We propose a framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images.
We use the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole frame to the subsequent frames of the cardiac cycle.
arXiv Detail & Related papers (2021-03-30T21:34:29Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.