論文の概要: Interactive Trimming against Evasive Online Data Manipulation Attacks: A Game-Theoretic Approach
- arxiv url: http://arxiv.org/abs/2403.10313v1
- Date: Fri, 15 Mar 2024 13:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:01:25.280936
- Title: Interactive Trimming against Evasive Online Data Manipulation Attacks: A Game-Theoretic Approach
- Title(参考訳): オンラインデータ操作攻撃に対するインタラクティブトリミング:ゲーム理論的アプローチ
- Authors: Yue Fu, Qingqing Ye, Rong Du, Haibo Hu,
- Abstract要約: 悪意のあるデータ中毒攻撃は、機械学習プロセスを破壊し、深刻な結果をもたらす可能性がある。
これらの攻撃を軽減するため、トリミングのような距離ベースの防御法が提案されている。
トリミング戦略を用いてオンラインデータ操作攻撃を防御するインタラクティブなゲーム理論モデルを提案する。
- 参考スコア(独自算出の注目度): 10.822843258077997
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the exponential growth of data and its crucial impact on our lives and decision-making, the integrity of data has become a significant concern. Malicious data poisoning attacks, where false values are injected into the data, can disrupt machine learning processes and lead to severe consequences. To mitigate these attacks, distance-based defenses, such as trimming, have been proposed, but they can be easily evaded by white-box attackers. The evasiveness and effectiveness of poisoning attack strategies are two sides of the same coin, making game theory a promising approach. However, existing game-theoretical models often overlook the complexities of online data poisoning attacks, where strategies must adapt to the dynamic process of data collection. In this paper, we present an interactive game-theoretical model to defend online data manipulation attacks using the trimming strategy. Our model accommodates a complete strategy space, making it applicable to strong evasive and colluding adversaries. Leveraging the principle of least action and the Euler-Lagrange equation from theoretical physics, we derive an analytical model for the game-theoretic process. To demonstrate its practical usage, we present a case study in a privacy-preserving data collection system under local differential privacy where a non-deterministic utility function is adopted. Two strategies are devised from this analytical model, namely, Tit-for-tat and Elastic. We conduct extensive experiments on real-world datasets, which showcase the effectiveness and accuracy of these two strategies.
- Abstract(参考訳): データの指数的な成長と、それが私たちの生活や意思決定に重大な影響を与えていることから、データの完全性は重要な関心事となっている。
データに偽の値が注入される悪意のあるデータ中毒攻撃は、機械学習のプロセスを妨害し、深刻な結果をもたらす可能性がある。
これらの攻撃を緩和するために、トリミングのような距離ベースの防御法が提案されているが、ホワイトボックス攻撃者によって容易に回避できる。
毒殺攻撃戦略の回避と有効性は同じコインの2つの側面であり、ゲーム理論を有望なアプローチにしている。
しかし、既存のゲーム理論モデルは、しばしば、戦略がデータ収集の動的なプロセスに適応しなければならないオンラインデータ中毒攻撃の複雑さを見落としている。
本稿では,トリミング戦略を用いてオンラインデータ操作攻撃を防御する対話型ゲーム理論モデルを提案する。
我々のモデルは完全な戦略空間に対応しており、強力な回避と衝突する敵に適用できる。
理論物理学から最小作用の原理とオイラー・ラグランジュ方程式を利用すると、ゲーム理論の過程の解析モデルが導かれる。
本稿では,その実用性を示すために,非決定論的ユーティリティ機能を採用するローカル差分プライバシの下でのプライバシ保護データ収集システムにおけるケーススタディを提案する。
この分析モデルから、Tit-for-tatとElasticという2つの戦略が考案された。
この2つの戦略の有効性と正確性を示す実世界のデータセットについて広範な実験を行った。
関連論文リスト
- Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data [29.842087372804905]
本稿では,現実シナリオにおけるバックドア攻撃対策の課題について述べる。
本稿では,モデルトレーナーが有毒なデータセット上でクリーンなモデルをトレーニングできるようにする,堅牢でクリーンなデータのないバックドア防御フレームワークであるMellivora Capensis(textttMeCa)を提案する。
論文 参考訳(メタデータ) (2024-05-21T12:20:19Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Spear and Shield: Adversarial Attacks and Defense Methods for
Model-Based Link Prediction on Continuous-Time Dynamic Graphs [40.01361505644007]
本稿では,連続時間動的グラフ上でのリンク予測のための,単純かつ効果的な逆攻撃手法T-SPEARを提案する。
本稿では,T-SPEARがリンク予測タスクにおいて,被害者モデルの性能を著しく低下させることを示す。
我々の攻撃は他のTGNNに転送可能であり、攻撃者が想定する被害者モデルとは異なる。
論文 参考訳(メタデータ) (2023-08-21T15:09:51Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Attacks on Online Learners: a Teacher-Student Analysis [8.567831574941252]
本稿では,オンライン学習環境における機械学習モデルに対する敵対的攻撃事例について検討する。
攻撃強度が臨界しきい値を超えると,学習者の精度が不連続に変化することが証明される。
以上の結果から,特にデータストリームを小さなバッチで処理した場合,強欲な攻撃は極めて効果的であることが示唆された。
論文 参考訳(メタデータ) (2023-05-18T17:26:03Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
本稿では,知識盗むプロセスで使用されるデータの分散設計に焦点をあてた,新しい視点代替トレーニングを提案する。
これら2つのモジュールの組み合わせにより、代替モデルとターゲットモデルの一貫性がさらに向上し、敵攻撃の有効性が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-26T07:26:29Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。