論文の概要: NetBench: A Large-Scale and Comprehensive Network Traffic Benchmark Dataset for Foundation Models
- arxiv url: http://arxiv.org/abs/2403.10319v2
- Date: Tue, 19 Mar 2024 03:36:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 12:54:38.183071
- Title: NetBench: A Large-Scale and Comprehensive Network Traffic Benchmark Dataset for Foundation Models
- Title(参考訳): NetBench: ファンデーションモデルのための大規模かつ総合的なネットワークトラフィックベンチマークデータセット
- Authors: Chen Qian, Xiaochang Li, Qineng Wang, Gang Zhou, Huajie Shao,
- Abstract要約: ネットワークトラフィック(ネットワークトラフィック、英: network traffic)は、インターネット上のコンピュータやサイバー物理システム間のパケットの形で送信されるデータ量である。
我々は,ネットワークトラフィック分類と生成タスクの両方において,機械学習モデル,特に基礎モデルを評価するための大規模かつ包括的なベンチマークデータセットであるNetBenchを紹介した。
- 参考スコア(独自算出の注目度): 15.452625276982987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In computer networking, network traffic refers to the amount of data transmitted in the form of packets between internetworked computers or Cyber-Physical Systems. Monitoring and analyzing network traffic is crucial for ensuring the performance, security, and reliability of a network. However, a significant challenge in network traffic analysis is to process diverse data packets including both ciphertext and plaintext. While many methods have been adopted to analyze network traffic, they often rely on different datasets for performance evaluation. This inconsistency results in substantial manual data processing efforts and unfair comparisons. Moreover, some data processing methods may cause data leakage due to improper separation of training and testing data. To address these issues, we introduce the NetBench, a large-scale and comprehensive benchmark dataset for assessing machine learning models, especially foundation models, in both network traffic classification and generation tasks. NetBench is built upon seven publicly available datasets and encompasses a broad spectrum of 20 tasks, including 15 classification tasks and 5 generation tasks. Furthermore, we evaluate eight State-Of-The-Art (SOTA) classification models (including two foundation models) and two generative models using our benchmark. The results show that foundation models significantly outperform the traditional deep learning methods in traffic classification. We believe NetBench will facilitate fair comparisons among various approaches and advance the development of foundation models for network traffic. Our benchmark is available at https://github.com/WM-JayLab/NetBench.
- Abstract(参考訳): ネットワークトラフィック(ネットワークトラフィック、英: network traffic)は、インターネット上のコンピュータやサイバー物理システム間のパケットの形で送信されるデータ量である。
ネットワークトラフィックの監視と分析は、ネットワークのパフォーマンス、セキュリティ、信頼性を保証するために不可欠である。
しかし、ネットワークトラフィック分析における重要な課題は、暗号文と平文の両方を含む多様なデータパケットを処理することである。
ネットワークトラフィックの分析には多くの方法が採用されているが、パフォーマンス評価には異なるデータセットに依存することが多い。
この矛盾は、実質的な手作業によるデータ処理と不公平な比較をもたらす。
さらに、一部のデータ処理手法は、トレーニングとテストデータの不適切な分離によるデータ漏洩を引き起こす可能性がある。
これらの問題に対処するために、ネットワークトラフィックの分類と生成タスクの両方において、機械学習モデル、特に基礎モデルを評価するための大規模かつ包括的なベンチマークデータセットであるNetBenchを紹介した。
NetBenchは7つの公開データセット上に構築されており、15の分類タスクと5つの生成タスクを含む、幅広い20のタスクを含んでいる。
さらに,2つの基礎モデルを含む8つのステートオフ・ザ・アート分類モデルと2つの生成モデルについて,ベンチマークを用いて評価した。
その結果,基盤モデルは交通分類における従来の深層学習法よりも有意に優れていた。
我々は、NetBenchが様々なアプローチの公正な比較を促進し、ネットワークトラフィックのための基盤モデルの開発を進めると信じている。
私たちのベンチマークはhttps://github.com/WM-JayLab/NetBench.comで公開されています。
関連論文リスト
- Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lensは、T5アーキテクチャを活用して、大規模な未ラベルデータから事前訓練された表現を学習するネットワークトラフィックの基礎モデルである。
Masked Span Prediction(MSP)、Packet Order Prediction(POP)、Homologous Traffic Prediction(HTP)の3つの異なるタスクを組み合わせた新しい損失を設計する。
論文 参考訳(メタデータ) (2024-02-06T02:45:13Z) - Data Filtering Networks [67.827994353269]
本研究では、大規模な未処理データセットをフィルタリングする第2ステップにおいて、データフィルタリングネットワーク(DFN)を学習する問題について検討する。
我々の重要な発見は、フィルタリングのためのネットワークの品質が下流タスクのパフォーマンスと異なることである。
我々の知見に基づいて、最先端の画像テキストデータセットを誘導する新しいデータフィルタリングネットワークを構築した。
論文 参考訳(メタデータ) (2023-09-29T17:37:29Z) - NetDiffus: Network Traffic Generation by Diffusion Models through
Time-Series Imaging [3.208802773440937]
我々は,1次元時系列ネットワークトラフィックを2次元画像に変換し,元のデータを表す画像を合成するエンド・ツー・エンド・エンド・フレームワークであるNetDiffusを開発した。
我々は、生成したデータの忠実度を66.4%増加し、下流機械学習タスクを18.1%増加させることにより、GAN(Generative Adversarial Networks)に基づく最先端のトラフィック生成手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-23T18:13:12Z) - NetGPT: Generative Pretrained Transformer for Network Traffic [4.205009931131087]
ネットワークトラフィックの事前訓練モデルでは,大規模生データを用いてネットワークトラフィックの本質的特性を学習することができる。
本稿では,トラフィックの理解と生成のための生成事前学習モデルNetGPTを提案する。
論文 参考訳(メタデータ) (2023-04-19T09:04:30Z) - RouteNet-Fermi: Network Modeling with Graph Neural Networks [7.227467283378366]
我々は、キューイング理論と同じ目標を共有するカスタムグラフニューラルネットワーク(GNN)モデルであるRouteNet-Fermiを紹介する。
提案モデルでは,ネットワークの遅延,ジッタ,パケット損失を正確に予測する。
実験の結果,RouteNet-Fermi はパケットレベルシミュレータと同様の精度でパケットレベルシミュレータを実現することがわかった。
論文 参考訳(メタデータ) (2022-12-22T23:02:40Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Inferring Network Structure From Data [1.2437226707039446]
本稿では,ネットワークの様々なタスクに対する有効性を評価することに焦点を当てたネットワークモデル選択手法を提案する。
このネットワーク定義は、基礎となるシステムの振る舞いをモデル化するためのいくつかの方法において重要であることを実証する。
論文 参考訳(メタデータ) (2020-04-04T23:30:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。