Investigating grammatical abstraction in language models using few-shot learning of novel noun gender
- URL: http://arxiv.org/abs/2403.10338v1
- Date: Fri, 15 Mar 2024 14:25:59 GMT
- Title: Investigating grammatical abstraction in language models using few-shot learning of novel noun gender
- Authors: Priyanka Sukumaran, Conor Houghton, Nina Kazanina,
- Abstract summary: We conduct a noun learning experiment to assess whether an LSTM and a decoder-only transformer can achieve human-like abstraction of grammatical gender in French.
We find that both language models effectively generalise novel noun gender from one to two learning examples and apply the learnt gender across agreement contexts.
While the generalisation behaviour of models suggests that they represent grammatical gender as an abstract category, like humans, further work is needed to explore the details.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Humans can learn a new word and infer its grammatical properties from very few examples. They have an abstract notion of linguistic properties like grammatical gender and agreement rules that can be applied to novel syntactic contexts and words. Drawing inspiration from psycholinguistics, we conduct a noun learning experiment to assess whether an LSTM and a decoder-only transformer can achieve human-like abstraction of grammatical gender in French. Language models were tasked with learning the gender of a novel noun embedding from a few examples in one grammatical agreement context and predicting agreement in another, unseen context. We find that both language models effectively generalise novel noun gender from one to two learning examples and apply the learnt gender across agreement contexts, albeit with a bias for the masculine gender category. Importantly, the few-shot updates were only applied to the embedding layers, demonstrating that models encode sufficient gender information within the word embedding space. While the generalisation behaviour of models suggests that they represent grammatical gender as an abstract category, like humans, further work is needed to explore the details of how exactly this is implemented. For a comparative perspective with human behaviour, we conducted an analogous one-shot novel noun gender learning experiment, which revealed that native French speakers, like language models, also exhibited a masculine gender bias and are not excellent one-shot learners either.
Related papers
- What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
This paper investigates biases of Large Language Models (LLMs) through the lens of grammatical gender.
We prompt a model to describe nouns with adjectives in various languages, focusing specifically on languages with grammatical gender.
We find that a simple classifier can not only predict noun gender above chance but also exhibit cross-language transferability.
arXiv Detail & Related papers (2024-07-12T22:10:16Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
We show that multilingual models suffer from significant gender biases just as monolingual models do.
We propose a novel benchmark, MAGBIG, intended to foster research on gender bias in multilingual models.
Our results show that not only do models exhibit strong gender biases but they also behave differently across languages.
arXiv Detail & Related papers (2024-01-29T12:02:28Z) - Using Artificial French Data to Understand the Emergence of Gender Bias
in Transformer Language Models [5.22145960878624]
This work takes an initial step towards exploring the less researched topic of how neural models discover linguistic properties of words, such as gender, as well as the rules governing their usage.
We propose to use an artificial corpus generated by a PCFG based on French to precisely control the gender distribution in the training data and determine under which conditions a model correctly captures gender information or, on the contrary, appears gender-biased.
arXiv Detail & Related papers (2023-10-24T14:08:37Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Do LSTMs See Gender? Probing the Ability of LSTMs to Learn Abstract
Syntactic Rules [0.0]
LSTMs trained on next-word prediction can accurately perform linguistic tasks that require tracking long-distance syntactic dependencies.
Here, we test gender agreement in French which requires tracking both hierarchical syntactic structures and the inherent gender of lexical units.
Our model is able to reliably predict long-distance gender agreement in two subject-predicate contexts.
arXiv Detail & Related papers (2022-10-31T21:37:12Z) - Don't Forget About Pronouns: Removing Gender Bias in Language Models
Without Losing Factual Gender Information [4.391102490444539]
We focus on two types of such signals in English texts: factual gender information and gender bias.
We aim to diminish the stereotypical bias in the representations while preserving the factual gender signal.
arXiv Detail & Related papers (2022-06-21T21:38:25Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
We focus on the representation of gender distinctions as a practical case study.
We examine the extent to which the gender concept is encoded in shared subspaces across different languages.
arXiv Detail & Related papers (2022-04-20T00:13:01Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
We perform a case study on the singular they, a common way to promote gender inclusion in English.
We show how a model can be trained to produce gender-neutral English with 1% word error rate with no human-labeled data.
arXiv Detail & Related papers (2021-02-12T21:47:48Z) - An exploration of the encoding of grammatical gender in word embeddings [0.6461556265872973]
The study of grammatical gender based on word embeddings can give insight into discussions on how grammatical genders are determined.
It is found that there is an overlap in how grammatical gender is encoded in Swedish, Danish, and Dutch embeddings.
arXiv Detail & Related papers (2020-08-05T06:01:46Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.