Don't Forget About Pronouns: Removing Gender Bias in Language Models
Without Losing Factual Gender Information
- URL: http://arxiv.org/abs/2206.10744v1
- Date: Tue, 21 Jun 2022 21:38:25 GMT
- Title: Don't Forget About Pronouns: Removing Gender Bias in Language Models
Without Losing Factual Gender Information
- Authors: Tomasz Limisiewicz and David Mare\v{c}ek
- Abstract summary: We focus on two types of such signals in English texts: factual gender information and gender bias.
We aim to diminish the stereotypical bias in the representations while preserving the factual gender signal.
- Score: 4.391102490444539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The representations in large language models contain multiple types of gender
information. We focus on two types of such signals in English texts: factual
gender information, which is a grammatical or semantic property, and gender
bias, which is the correlation between a word and specific gender. We can
disentangle the model's embeddings and identify components encoding both types
of information with probing. We aim to diminish the stereotypical bias in the
representations while preserving the factual gender signal. Our filtering
method shows that it is possible to decrease the bias of gender-neutral
profession names without significant deterioration of language modeling
capabilities. The findings can be applied to language generation to mitigate
reliance on stereotypes while preserving gender agreement in coreferences.
Related papers
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - Investigating grammatical abstraction in language models using few-shot learning of novel noun gender [0.0]
We conduct a noun learning experiment to assess whether an LSTM and a decoder-only transformer can achieve human-like abstraction of grammatical gender in French.
We find that both language models effectively generalise novel noun gender from one to two learning examples and apply the learnt gender across agreement contexts.
While the generalisation behaviour of models suggests that they represent grammatical gender as an abstract category, like humans, further work is needed to explore the details.
arXiv Detail & Related papers (2024-03-15T14:25:59Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
We show that multilingual models suffer from significant gender biases just as monolingual models do.
We propose a novel benchmark, MAGBIG, intended to foster research on gender bias in multilingual models.
Our results show that not only do models exhibit strong gender biases but they also behave differently across languages.
arXiv Detail & Related papers (2024-01-29T12:02:28Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
Recent studies show that traditional fairytales are rife with harmful gender biases.
This work aims to assess learned biases of language models by evaluating their robustness against gender perturbations.
arXiv Detail & Related papers (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
bridging the gap between languages for which parallel data is not available affects gender bias in multilingual NMT.
We study the effect of encouraging language-agnostic hidden representations on models' ability to preserve gender.
We find that language-agnostic representations mitigate zero-shot models' masculine bias, and with increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot translation regarding fairer gender preservation for speaker-related gender agreement.
arXiv Detail & Related papers (2023-05-26T13:51:50Z) - Model-Agnostic Gender Debiased Image Captioning [29.640940966944697]
Image captioning models are known to perpetuate and amplify harmful societal bias in the training set.
We propose a framework, called LIBRA, that learns from synthetically biased samples to decrease both types of biases.
arXiv Detail & Related papers (2023-04-07T15:30:49Z) - Measuring Gender Bias in Word Embeddings of Gendered Languages Requires
Disentangling Grammatical Gender Signals [3.0349733976070015]
We demonstrate that word embeddings learn the association between a noun and its grammatical gender in grammatically gendered languages.
We show that disentangling grammatical gender signals from word embeddings may lead to improvement in semantic machine learning tasks.
arXiv Detail & Related papers (2022-06-03T17:11:00Z) - Quantifying Gender Bias Towards Politicians in Cross-Lingual Language
Models [104.41668491794974]
We quantify the usage of adjectives and verbs generated by language models surrounding the names of politicians as a function of their gender.
We find that while some words such as dead, and designated are associated with both male and female politicians, a few specific words such as beautiful and divorced are predominantly associated with female politicians.
arXiv Detail & Related papers (2021-04-15T15:03:26Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.