Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection
- URL: http://arxiv.org/abs/2403.10339v1
- Date: Fri, 15 Mar 2024 14:26:53 GMT
- Title: Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection
- Authors: Rui Zhang, Dawei Cheng, Xin Liu, Jie Yang, Yi Ouyang, Xian Wu, Yefeng Zheng,
- Abstract summary: Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
- Score: 51.11833609431406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based anomaly detection is currently an important research topic in the field of graph neural networks (GNNs). We find that in graph anomaly detection, the homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs. For the first time, we introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon. To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe). Previous works typically focused on pruning, selecting or connecting on original relationships, and we refer to these methods as modifications. Different from these works, our method emphasizes generating new relationships with low class homophily variance, using the original relationships as an auxiliary. HedGe samples homophily adjacency matrices from scratch using a self-attention mechanism, and leverages nodes that are relevant in the feature space but not directly connected in the original graph. Additionally, we modify the loss function to punish the generation of unnecessary heterophilic edges by the model. Extensive comparison experiments demonstrate that HedGe achieved the best performance across multiple benchmark datasets, including anomaly detection and edgeless node classification. The proposed model also improves the robustness under the novel Heterophily Attack with increased class homophily variance on other graph classification tasks.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Geometer: Graph Few-Shot Class-Incremental Learning via Prototype
Representation [50.772432242082914]
Existing graph neural network based methods mainly focus on classifying unlabeled nodes within fixed classes with abundant labeling.
In this paper, we focus on this challenging but practical graph few-shot class-incremental learning (GFSCIL) problem and propose a novel method called Geometer.
Instead of replacing and retraining the fully connected neural network classifer, Geometer predicts the label of a node by finding the nearest class prototype.
arXiv Detail & Related papers (2022-05-27T13:02:07Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Simple Truncated SVD based Model for Node Classification on Heterophilic
Graphs [0.5309004257911242]
Graph Neural Networks (GNNs) have shown excellent performance on graphs that exhibit strong homophily.
Recent approaches have typically modified aggregation schemes, designed adaptive graph filters, etc. to address this limitation.
We propose a simple alternative method that exploits Truncated Singular Value Decomposition (TSVD) of topological structure and node features.
arXiv Detail & Related papers (2021-06-24T07:48:18Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - New Benchmarks for Learning on Non-Homophilous Graphs [20.082182515715182]
We present a series of improved graph datasets with node label relationships that do not satisfy the homophily principle.
We also introduce a new measure of the presence or absence of homophily that is better suited than existing measures in different regimes.
arXiv Detail & Related papers (2021-04-03T13:45:06Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
Graph neural networks (GNNs) have been extensively studied for prediction tasks on graphs.
Most GNNs assume local homophily, i.e., strong similarities in localneighborhoods.
We propose a flexible GNN model, which is capable of handling any graphs without beingrestricted by their underlying homophily.
arXiv Detail & Related papers (2021-03-26T00:35:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.