Ordinal Classification with Distance Regularization for Robust Brain Age Prediction
- URL: http://arxiv.org/abs/2403.10522v2
- Date: Mon, 6 May 2024 16:13:34 GMT
- Title: Ordinal Classification with Distance Regularization for Robust Brain Age Prediction
- Authors: Jay Shah, Md Mahfuzur Rahman Siddiquee, Yi Su, Teresa Wu, Baoxin Li,
- Abstract summary: Age is one of the major known risk factors for Alzheimer's Disease (AD)
Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions.
Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently.
These methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects.
- Score: 25.555190119033615
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Age is one of the major known risk factors for Alzheimer's Disease (AD). Detecting AD early is crucial for effective treatment and preventing irreversible brain damage. Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions. Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently. However, these methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects. This weakens the reliability of predicted brain age as a valid biomarker for downstream clinical applications. Here, we reformulate the brain age prediction task from regression to classification to address the issue of systematic bias. Recognizing the importance of preserving ordinal information from ages to understand aging trajectory and monitor aging longitudinally, we propose a novel ORdinal Distance Encoded Regularization (ORDER) loss that incorporates the order of age labels, enhancing the model's ability to capture age-related patterns. Extensive experiments and ablation studies demonstrate that this framework reduces systematic bias, outperforms state-of-art methods by statistically significant margins, and can better capture subtle differences between clinical groups in an independent AD dataset. Our implementation is publicly available at https://github.com/jaygshah/Robust-Brain-Age-Prediction.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions [4.543154658281538]
The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions.
Brain age can be predicted using MRIs and machine learning techniques.
We introduce Synthetic Brain Age ( SynthBA), a robust deep-learning model designed for predicting brain age.
arXiv Detail & Related papers (2024-06-01T08:58:40Z) - Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
We propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation.
A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships.
Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank.
arXiv Detail & Related papers (2024-03-02T16:13:06Z) - Explainable Brain Age Prediction using coVariance Neural Networks [94.81523881951397]
We propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features.
Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD)
We make two important observations: VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions.
arXiv Detail & Related papers (2023-05-27T22:28:25Z) - Brain Structure Ages -- A new biomarker for multi-disease classification [0.0]
We propose to extend the notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging.
Brain structure ages can be used to compute the deviation from the normal aging process of each brain structure.
arXiv Detail & Related papers (2023-04-13T14:56:51Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Age-Net: An MRI-Based Iterative Framework for Brain Biological Age
Estimation [18.503467872057424]
The concept of biological age (BA) is hard to grasp mainly due to the lack of a clearly defined reference standard.
We propose a new imaging-based framework for organ-specific BA estimation.
arXiv Detail & Related papers (2020-09-22T19:04:02Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.