SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions
- URL: http://arxiv.org/abs/2406.00365v2
- Date: Fri, 19 Jul 2024 16:32:05 GMT
- Title: SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions
- Authors: Lemuel Puglisi, Alessia Rondinella, Linda De Meo, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì,
- Abstract summary: The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions.
Brain age can be predicted using MRIs and machine learning techniques.
We introduce Synthetic Brain Age ( SynthBA), a robust deep-learning model designed for predicting brain age.
- Score: 4.543154658281538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain age is a critical measure that reflects the biological ageing process of the brain. The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions. Brain age can be predicted using MRIs and machine learning techniques. However, existing methods are often sensitive to acquisition-related variabilities, such as differences in acquisition protocols, scanners, MRI sequences, and resolutions, significantly limiting their application in highly heterogeneous clinical settings. In this study, we introduce Synthetic Brain Age (SynthBA), a robust deep-learning model designed for predicting brain age. SynthBA utilizes an advanced domain randomization technique, ensuring effective operation across a wide array of acquisition-related variabilities. To assess the effectiveness and robustness of SynthBA, we evaluate its predictive capabilities on internal and external datasets, encompassing various MRI sequences and resolutions, and compare it with state-of-the-art techniques. Additionally, we calculate the brain PAD in a large cohort of subjects with Alzheimer's Disease (AD), demonstrating a significant correlation with AD-related measures of cognitive dysfunction. SynthBA holds the potential to facilitate the broader adoption of brain age prediction in clinical settings, where re-training or fine-tuning is often unfeasible. The SynthBA source code and pre-trained models are publicly available at https://github.com/LemuelPuglisi/SynthBA.
Related papers
- Multi-Task Adversarial Variational Autoencoder for Estimating Biological Brain Age with Multimodal Neuroimaging [8.610253537046692]
We present the Multitask Adversarial Variational Autoencoder, a custom deep learning framework designed to improve brain age predictions.
The model separates latent variables into generic and unique codes, isolating shared and modality-specific features.
By integrating multitask learning with sex classification as an additional task, the model captures sex-specific aging patterns.
arXiv Detail & Related papers (2024-11-15T10:50:36Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
We propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation.
A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships.
Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank.
arXiv Detail & Related papers (2024-03-02T16:13:06Z) - SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People [0.49478969093606673]
Synthetic longitudinal brain MRI simulates brain aging and would enable more efficient research on neurodevelopmental and neurodegenerative conditions.
We present a diffusion-based approach called SynthBrainGrow for synthetic brain aging with a two-year step.
Results show that SynthBrainGrow can accurately capture substructures and simulate structural changes such as ventricle enlargement and cortical thinning.
arXiv Detail & Related papers (2024-02-22T20:47:40Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Ordinal Classification with Distance Regularization for Robust Brain Age Prediction [25.555190119033615]
Age is one of the major known risk factors for Alzheimer's Disease (AD)
Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions.
Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently.
These methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects.
arXiv Detail & Related papers (2023-10-25T20:39:07Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Explainable Brain Age Prediction using coVariance Neural Networks [94.81523881951397]
We propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features.
Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD)
We make two important observations: VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions.
arXiv Detail & Related papers (2023-05-27T22:28:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.