KARINA: An Efficient Deep Learning Model for Global Weather Forecast
- URL: http://arxiv.org/abs/2403.10555v1
- Date: Wed, 13 Mar 2024 06:41:37 GMT
- Title: KARINA: An Efficient Deep Learning Model for Global Weather Forecast
- Authors: Minjong Cheon, Yo-Hwan Choi, Seon-Yu Kang, Yumi Choi, Jeong-Gil Lee, Daehyun Kang,
- Abstract summary: KARINA achieves forecasting accuracy comparable to higher-resolution counterparts with significantly less computational resources.
KARINA combines ConvNext, SENet, and Geocyclic Padding to enhance weather forecasting at a 2.5deg resolution.
KARINA sets new benchmarks in weather forecasting accuracy, surpassing existing models like the ECMWF S2S reforecasts at a lead time of up to 7 days.
- Score: 2.9687381456164004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based, data-driven models are gaining prevalence in climate research, particularly for global weather prediction. However, training the global weather data at high resolution requires massive computational resources. Therefore, we present a new model named KARINA to overcome the substantial computational demands typical of this field. This model achieves forecasting accuracy comparable to higher-resolution counterparts with significantly less computational resources, requiring only 4 NVIDIA A100 GPUs and less than 12 hours of training. KARINA combines ConvNext, SENet, and Geocyclic Padding to enhance weather forecasting at a 2.5{\deg} resolution, which could filter out high-frequency noise. Geocyclic Padding preserves pixels at the lateral boundary of the input image, thereby maintaining atmospheric flow continuity in the spherical Earth. SENet dynamically improves feature response, advancing atmospheric process modeling, particularly in the vertical column process as numerous channels. In this vein, KARINA sets new benchmarks in weather forecasting accuracy, surpassing existing models like the ECMWF S2S reforecasts at a lead time of up to 7 days. Remarkably, KARINA achieved competitive performance even when compared to the recently developed models (Pangu-Weather, GraphCast, ClimaX, and FourCastNet) trained with high-resolution data having 100 times larger pixels. Conclusively, KARINA significantly advances global weather forecasting by efficiently modeling Earth's atmosphere with improved accuracy and resource efficiency.
Related papers
- Super Resolution On Global Weather Forecasts [0.1747623282473278]
Group seeks to improve upon existing deep learning based forecasting methods by increasing spatial resolutions of global weather predictions.
Specifically, we are interested in performing super resolution (SR) on GraphCast temperature predictions by increasing the global precision from 1 degree of accuracy to 0.5 degrees.
arXiv Detail & Related papers (2024-09-17T19:07:13Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5K is a comprehensive collection of observational weather data that better reflects real-world scenarios.
It enables a better training of models and a more accurate assessment of the real-world forecasting capabilities of TSF models.
We provide researchers with a clear assessment of the gap between academic TSF models and real-world weather forecasting applications.
arXiv Detail & Related papers (2024-06-20T15:18:52Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh.
In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables.
arXiv Detail & Related papers (2023-09-11T16:25:48Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN)
New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid.
Our model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables.
arXiv Detail & Related papers (2020-03-15T19:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.