Modernizing CNN-based Weather Forecast Model towards Higher Computational Efficiency
- URL: http://arxiv.org/abs/2507.10893v1
- Date: Tue, 15 Jul 2025 01:16:32 GMT
- Title: Modernizing CNN-based Weather Forecast Model towards Higher Computational Efficiency
- Authors: Minjong Cheon, Eunhan Goo, Su-Hyeon Shin, Muhammad Ahmed, Hyungjun Kim,
- Abstract summary: We introduce a modernized CNN-based model for global weather forecasting.<n> KAI-a incorporates a scale-invariant architecture and InceptionNeXt-based blocks within a geophysically-aware design.<n>It is trained on the ERA5 daily dataset with 67 atmospheric variables and completes training in just 12 hours on a single NVIDIA L40s GPU.
- Score: 5.781137818421603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, AI-based weather forecast models have achieved impressive advances. These models have reached accuracy levels comparable to traditional NWP systems, marking a significant milestone in data-driven weather prediction. However, they mostly leverage Transformer-based architectures, which often leads to high training complexity and resource demands due to the massive parameter sizes. In this study, we introduce a modernized CNN-based model for global weather forecasting that delivers competitive accuracy while significantly reducing computational requirements. To present a systematic modernization roadmap, we highlight key architectural enhancements across multiple design scales from an earlier CNN-based approach. KAI-a incorporates a scale-invariant architecture and InceptionNeXt-based blocks within a geophysically-aware design, tailored to the structure of Earth system data. Trained on the ERA5 daily dataset with 67 atmospheric variables, the model contains about 7 million parameters and completes training in just 12 hours on a single NVIDIA L40s GPU. Our evaluation shows that KAI-a matches the performance of state-of-the-art models in medium-range weather forecasting, while offering a significantly lightweight design. Furthermore, case studies on the 2018 European heatwave and the East Asian summer monsoon demonstrate KAI-a's robust skill in capturing extreme events, reinforcing its practical utility.
Related papers
- Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model [0.0]
We propose a weather prediction model based on a multi-scale convolutional CNN-LSTM-Attention architecture.<n>The model integrates Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and attention mechanisms.<n> Experimental results show that the model performs excellently in predicting temperature trends with high accuracy.
arXiv Detail & Related papers (2024-12-11T00:42:31Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.<n>Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.<n>We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - KARINA: An Efficient Deep Learning Model for Global Weather Forecast [2.9687381456164004]
KARINA achieves forecasting accuracy comparable to higher-resolution counterparts with significantly less computational resources.
KARINA combines ConvNext, SENet, and Geocyclic Padding to enhance weather forecasting at a 2.5deg resolution.
KARINA sets new benchmarks in weather forecasting accuracy, surpassing existing models like the ECMWF S2S reforecasts at a lead time of up to 7 days.
arXiv Detail & Related papers (2024-03-13T06:41:37Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
We introduce a novel deep learning architecture for forecasting high-resolution weather data.
Our Weather Model achieves significant performance improvements compared to baseline deep learning models.
arXiv Detail & Related papers (2021-02-01T08:30:42Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN)
New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid.
Our model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables.
arXiv Detail & Related papers (2020-03-15T19:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.