論文の概要: Counter-Samples: A Stateless Strategy to Neutralize Black Box Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2403.10562v1
- Date: Thu, 14 Mar 2024 10:59:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 23:05:08.891637
- Title: Counter-Samples: A Stateless Strategy to Neutralize Black Box Adversarial Attacks
- Title(参考訳): Counter-Samples: ブラックボックスの敵攻撃を中立化するためのステートレス戦略
- Authors: Roey Bokobza, Yisroel Mirsky,
- Abstract要約: 本稿では,ブラックボックス攻撃に対する新たな防御法を提案する。
入力サンプルの衛生化に依存する従来の前処理防御とは異なり、我々の戦略は攻撃プロセス自体に対処する。
我々のアプローチは最先端のブラックボックス攻撃に対して極めて効果的であり、CIFAR-10とImageNetデータセットの双方で既存の防御性能を上回っていることを実証する。
- 参考スコア(独自算出の注目度): 2.9815109163161204
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Our paper presents a novel defence against black box attacks, where attackers use the victim model as an oracle to craft their adversarial examples. Unlike traditional preprocessing defences that rely on sanitizing input samples, our stateless strategy counters the attack process itself. For every query we evaluate a counter-sample instead, where the counter-sample is the original sample optimized against the attacker's objective. By countering every black box query with a targeted white box optimization, our strategy effectively introduces an asymmetry to the game to the defender's advantage. This defence not only effectively misleads the attacker's search for an adversarial example, it also preserves the model's accuracy on legitimate inputs and is generic to multiple types of attacks. We demonstrate that our approach is remarkably effective against state-of-the-art black box attacks and outperforms existing defences for both the CIFAR-10 and ImageNet datasets. Additionally, we also show that the proposed defence is robust against strong adversaries as well.
- Abstract(参考訳): 本稿では,ブラックボックス攻撃に対する新たな防御法を提案する。
入力サンプルの衛生化に依存する従来の前処理防御とは異なり、ステートレス戦略は攻撃プロセス自体に対処します。
すべてのクエリに対して、攻撃者の目的に対して最適化された元のサンプルである反サンプルを評価します。
ブラックボックスの全てのクエリを対象とするホワイトボックス最適化に対処することにより,ゲームに対する非対称性をディフェンダーの優位性に効果的に導入する。
この防御は、攻撃者の敵の探索を効果的に誤解させるだけでなく、正当性のある入力に対するモデルの精度を保ち、複数のタイプの攻撃に対して汎用的である。
我々のアプローチは最先端のブラックボックス攻撃に対して極めて効果的であり、CIFAR-10とImageNetデータセットの双方で既存の防御性能を上回っていることを実証する。
さらに,提案した防衛は,強敵に対する堅牢性も示している。
関連論文リスト
- Improving behavior based authentication against adversarial attack using XAI [3.340314613771868]
本稿では,eXplainable AI(XAI)をベースとした,このようなシナリオにおける敵攻撃に対する防御戦略を提案する。
本手法で訓練した特徴セレクタは,元の認証器の前のフィルタとして使用することができる。
我々は,XAIをベースとした防衛戦略が敵の攻撃に対して有効であり,他の防衛戦略よりも優れていることを実証する。
論文 参考訳(メタデータ) (2024-02-26T09:29:05Z) - The Best Defense is a Good Offense: Adversarial Augmentation against
Adversarial Attacks [91.56314751983133]
A5$は、手元の入力に対する攻撃が失敗することを保証するために防御的摂動を構築するためのフレームワークである。
我々は,地上の真理ラベルを無視するロバスト化ネットワークを用いて,実機での防御強化を効果的に示す。
また、A5$を適用して、確実に堅牢な物理オブジェクトを作成する方法も示します。
論文 参考訳(メタデータ) (2023-05-23T16:07:58Z) - Stateful Defenses for Machine Learning Models Are Not Yet Secure Against
Black-box Attacks [28.93464970650329]
我々は、ステートフルディフェンスモデル(SDM)が、新しいタイプの適応ブラックボックス攻撃に対して非常に脆弱であることを示す。
我々はOracle-Guided Adaptive Rejection Smpling (OARS)と呼ばれる新しい適応ブラックボックス攻撃戦略を提案する。
本研究では,6つの共通ブラックボックス攻撃を強化する戦略を,現行のSDMに対して効果的に適用する方法を示す。
論文 参考訳(メタデータ) (2023-03-11T02:10:21Z) - Planning for Attacker Entrapment in Adversarial Settings [16.085007590604327]
本研究では,攻撃者の知識を使わずに攻撃者が操作できる環境で作業している攻撃者に対する防衛戦略を生成する枠組みを提案する。
この問題の定式化により、より単純な無限地平線割引MDPとして捉えることができ、MDPの最適方針は、攻撃者の行動に対するディフェンダーの戦略を与える。
論文 参考訳(メタデータ) (2023-03-01T21:08:27Z) - Adversarial Defense via Image Denoising with Chaotic Encryption [65.48888274263756]
攻撃者には秘密鍵以外の全てを利用できると仮定する新しい防御法を提案する。
我々のフレームワークは、離散化ベイカーマップによる暗号化と併用した画像復号化手法を用いている。
論文 参考訳(メタデータ) (2022-03-19T10:25:02Z) - Parallel Rectangle Flip Attack: A Query-based Black-box Attack against
Object Detection [89.08832589750003]
本稿では,攻撃領域近傍の準最適検出を回避するために,ランダム探索による並列矩形フリップ攻撃(PRFA)を提案する。
提案手法は, アンカーベースやアンカーフリーなど, 様々な人気物体検出装置を効果的かつ効率的に攻撃し, 転送可能な対向例を生成する。
論文 参考訳(メタデータ) (2022-01-22T06:00:17Z) - Output Randomization: A Novel Defense for both White-box and Black-box
Adversarial Models [8.189696720657247]
敵対的な例は、さまざまなシナリオでディープニューラルネットワークモデルに脅威をもたらす。
ブラックボックスモデルとホワイトボックスモデルの両方における攻撃に対する防御手段としての出力ランダム化の利用について検討する。
論文 参考訳(メタデータ) (2021-07-08T12:27:19Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
本研究では,自己指導型高水準表現の堅牢性について,敵攻撃に対する防御に利用して検討する。
ASVspoof 2019データセットの実験結果は、Mockingjayによって抽出されたハイレベルな表現が、敵の例の転送可能性を妨げることを示した。
論文 参考訳(メタデータ) (2020-06-05T03:03:06Z) - Harnessing adversarial examples with a surprisingly simple defense [47.64219291655723]
敵の例に対抗して、非常に簡単な方法を紹介します。
基本的な考え方は、テスト時にReLU関数の傾きを上げることである。
MNISTとCIFAR-10データセットによる実験では、提案された防御の有効性が示されている。
論文 参考訳(メタデータ) (2020-04-26T03:09:42Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。