Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers
- URL: http://arxiv.org/abs/2403.10574v1
- Date: Fri, 15 Mar 2024 02:39:26 GMT
- Title: Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers
- Authors: Jinxia Xie, Bineng Zhong, Zhiyi Mo, Shengping Zhang, Liangtao Shi, Shuxiang Song, Rongrong Ji,
- Abstract summary: rich-temporal information is crucial to the complicated target appearance in visual tracking.
Our method improves the tracker's performance on six popular tracking benchmarks.
- Score: 55.46413719810273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rich spatio-temporal information is crucial to capture the complicated target appearance variations in visual tracking. However, most top-performing tracking algorithms rely on many hand-crafted components for spatio-temporal information aggregation. Consequently, the spatio-temporal information is far away from being fully explored. To alleviate this issue, we propose an adaptive tracker with spatio-temporal transformers (named AQATrack), which adopts simple autoregressive queries to effectively learn spatio-temporal information without many hand-designed components. Firstly, we introduce a set of learnable and autoregressive queries to capture the instantaneous target appearance changes in a sliding window fashion. Then, we design a novel attention mechanism for the interaction of existing queries to generate a new query in current frame. Finally, based on the initial target template and learnt autoregressive queries, a spatio-temporal information fusion module (STM) is designed for spatiotemporal formation aggregation to locate a target object. Benefiting from the STM, we can effectively combine the static appearance and instantaneous changes to guide robust tracking. Extensive experiments show that our method significantly improves the tracker's performance on six popular tracking benchmarks: LaSOT, LaSOText, TrackingNet, GOT-10k, TNL2K, and UAV123.
Related papers
- Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Multi-step Temporal Modeling for UAV Tracking [14.687636301587045]
We introduce MT-Track, a streamlined and efficient multi-step temporal modeling framework for enhanced UAV tracking.
We unveil a unique temporal correlation module that dynamically assesses the interplay between the template and search region features.
We propose a mutual transformer module to refine the correlation maps of historical and current frames by modeling the temporal knowledge in the tracking sequence.
arXiv Detail & Related papers (2024-03-07T09:48:13Z) - ACTrack: Adding Spatio-Temporal Condition for Visual Object Tracking [0.5371337604556311]
Efficiently modeling-temporal relations of objects is a key challenge in visual object tracking (VOT)
Existing methods track by appearance-based similarity or long-term relation modeling, resulting in rich temporal contexts between consecutive frames being easily overlooked.
In this paper we present ACTrack, a new framework with additive pre-temporal tracking framework with large memory conditions. It preserves the quality and capabilities of the pre-trained backbone by freezing its parameters, and makes a trainable lightweight additive net to model temporal relations in tracking.
We design an additive siamese convolutional network to ensure the integrity of spatial features and temporal sequence
arXiv Detail & Related papers (2024-02-27T07:34:08Z) - Tracking Objects and Activities with Attention for Temporal Sentence
Grounding [51.416914256782505]
Temporal sentence (TSG) aims to localize the temporal segment which is semantically aligned with a natural language query in an untrimmed segment.
We propose a novel Temporal Sentence Tracking Network (TSTNet), which contains (A) a Cross-modal Targets Generator to generate multi-modal and search space, and (B) a Temporal Sentence Tracker to track multi-modal targets' behavior and to predict query-related segment.
arXiv Detail & Related papers (2023-02-21T16:42:52Z) - ProContEXT: Exploring Progressive Context Transformer for Tracking [20.35886416084831]
Existing Visual Object Tracking (VOT) only takes the target area in the first frame as a template.
This causes tracking to inevitably fail in fast-changing and crowded scenes, as it cannot account for changes in object appearance between frames.
We revamped the framework with Progressive Context.
Transformer Tracker (ProContEXT), which coherently exploits spatial and temporal contexts to predict object motion trajectories.
arXiv Detail & Related papers (2022-10-27T14:47:19Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Context-aware Visual Tracking with Joint Meta-updating [11.226947525556813]
We propose a context-aware tracking model to optimize the tracker over the representation space, which jointly meta-update both branches by exploiting information along the whole sequence.
The proposed tracking method achieves an EAO score of 0.514 on VOT2018 with the speed of 40FPS, demonstrating its capability of improving the accuracy and robustness of the underlying tracker with little speed drop.
arXiv Detail & Related papers (2022-04-04T14:16:00Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
We introduce "tracking-by-detection" into Video Object (VOS)
We propose a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance.
We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
arXiv Detail & Related papers (2020-07-11T05:44:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.