Exploring Dynamic Transformer for Efficient Object Tracking
- URL: http://arxiv.org/abs/2403.17651v1
- Date: Tue, 26 Mar 2024 12:31:58 GMT
- Title: Exploring Dynamic Transformer for Efficient Object Tracking
- Authors: Jiawen Zhu, Xin Chen, Haiwen Diao, Shuai Li, Jun-Yan He, Chenyang Li, Bin Luo, Dong Wang, Huchuan Lu,
- Abstract summary: We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
- Score: 58.120191254379854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The speed-precision trade-off is a critical problem for visual object tracking which usually requires low latency and deployment on constrained resources. Existing solutions for efficient tracking mainly focus on adopting light-weight backbones or modules, which nevertheless come at the cost of a sacrifice in precision. In this paper, inspired by dynamic network routing, we propose DyTrack, a dynamic transformer framework for efficient tracking. Real-world tracking scenarios exhibit diverse levels of complexity. We argue that a simple network is sufficient for easy frames in video sequences, while more computation could be assigned to difficult ones. DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget. Thus, it can achieve higher performance with the same running speed. We formulate instance-specific tracking as a sequential decision problem and attach terminating branches to intermediate layers of the entire model. Especially, to fully utilize the computations, we introduce the feature recycling mechanism to reuse the outputs of predecessors. Furthermore, a target-aware self-distillation strategy is designed to enhance the discriminating capabilities of early predictions by effectively mimicking the representation pattern of the deep model. Extensive experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model. For instance, DyTrack obtains 64.9% AUC on LaSOT with a speed of 256 fps.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
Single-stream architectures utilizing pre-trained ViT backbones offer improved performance, efficiency, and robustness.
We boost the efficiency of this framework by tailoring it into an adaptive framework that dynamically exits Transformer blocks for real-time UAV tracking.
We also improve the effectiveness of ViTs in handling motion blur, a common issue in UAV tracking caused by the fast movements of either the UAV, the tracked objects, or both.
arXiv Detail & Related papers (2024-07-07T14:10:04Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers [55.46413719810273]
rich-temporal information is crucial to the complicated target appearance in visual tracking.
Our method improves the tracker's performance on six popular tracking benchmarks.
arXiv Detail & Related papers (2024-03-15T02:39:26Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - DeepScale: An Online Frame Size Adaptation Framework to Accelerate
Visual Multi-object Tracking [8.878656943106934]
DeepScale is a model agnostic frame size selection approach to accelerate tracking throughput.
It can find a suitable trade-off between tracking accuracy and speed by adapting frame sizes at run time.
Compared to a state-of-the-art tracker, DeepScale++, a variant of DeepScale achieves 1.57X accelerated with only moderate degradation.
arXiv Detail & Related papers (2021-07-22T00:12:58Z) - Faster and Simpler Siamese Network for Single Object Tracking [9.365739363728983]
Single object tracking (SOT) is one of the most important tasks in computer vision.
Siamese networks have been proposed and perform better than most of the traditional methods.
Most of these methods could only meet the needs of real-time object tracking in ideal environments.
arXiv Detail & Related papers (2021-05-07T03:37:19Z) - Faster object tracking pipeline for real time tracking [0.0]
Multi-object tracking (MOT) is a challenging practical problem for vision based applications.
This paper showcases a generic pipeline which can be used to speed up detection based object tracking methods.
arXiv Detail & Related papers (2020-11-08T06:33:48Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
We introduce "tracking-by-detection" into Video Object (VOS)
We propose a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance.
We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
arXiv Detail & Related papers (2020-07-11T05:44:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.