From Algorithms to Outcomes: Reviewing AI's Role in Non-Muscle-Invasive Bladder Cancer Recurrence Prediction
- URL: http://arxiv.org/abs/2403.10586v1
- Date: Fri, 15 Mar 2024 17:03:45 GMT
- Title: From Algorithms to Outcomes: Reviewing AI's Role in Non-Muscle-Invasive Bladder Cancer Recurrence Prediction
- Authors: Saram Abbas, Dr Rishad Shafik, Prof Naeem Soomro, Prof Rakesh Heer, Dr Kabita Adhikari,
- Abstract summary: Bladder cancer, the leading urinary tract cancer, is responsible for 15 deaths daily in the UK.
Current tools for predicting recurrence use scoring systems that overestimate risk and have poor accuracy.
Machine learning (ML) techniques have emerged as a promising approach for predicting NMIBC recurrence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Bladder cancer, the leading urinary tract cancer, is responsible for 15 deaths daily in the UK. This cancer predominantly manifests as non-muscle-invasive bladder cancer (NMIBC), characterised by tumours not yet penetrating the muscle layer of the bladder wall. NMIBC is plagued by a very high recurrence rate of 70-80% and hence the costliest treatments. Current tools for predicting recurrence use scoring systems that overestimate risk and have poor accuracy. Inaccurate and delayed prediction of recurrence significantly elevates the likelihood of mortality. Accurate prediction of recurrence is hence vital for cost-effective management and treatment planning. This is where Machine learning (ML) techniques have emerged as a promising approach for predicting NMIBC recurrence by leveraging molecular and clinical data. This review provides a comprehensive analysis of ML approaches for predicting NMIBC recurrence. Our systematic evaluation demonstrates the potential of diverse ML algorithms and markers, including radiomic, clinical, histopathological, genomic, and biochemical data in enhancing recurrence prediction and personalised patient management. We summarise various prediction tasks, data modalities, and ML models used, highlighting their performance, limitations, and future directions of incorporating cost-effectiveness. Challenges related to generalisability and interpretability of artificial intelligent models are discussed, emphasising the need for collaborative efforts and robust datasets.
Related papers
- Attention-enabled Explainable AI for Bladder Cancer Recurrence Prediction [0.4369058206183195]
Non-muscle-invasive bladder cancer (NMIBC) recurrence rates soar as high as 70-80%.
Each recurrence triggers a cascade of invasive procedures, lifelong surveillance, and escalating healthcare costs.
Existing clinical prediction tools remain fundamentally flawed, often overestimating recurrence risk.
arXiv Detail & Related papers (2025-04-30T20:39:33Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.
predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.
We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018.
A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy.
The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients.
arXiv Detail & Related papers (2024-10-02T03:21:01Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
The integration of external knowledge from Large Language Models (LLMs) presents a promising avenue for improving healthcare predictions.
We propose IntelliCare, a novel framework that leverages LLMs to provide high-quality patient-level external knowledge.
IntelliCare identifies patient cohorts and employs task-relevant statistical information to augment LLM understanding and generation.
arXiv Detail & Related papers (2024-08-23T13:56:00Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
We introduce an innovative projections-based method that seamlessly integrates clinical expertise as domain constraints.
We measure the distance of corrected data from the constraints defining a healthy range of patient data, resulting in a unique predictive metric we term as "trust-scores"
We show an AUROC of 0.865 and a precision of 0.922, that surpasses conventional ML models without such projections.
arXiv Detail & Related papers (2023-08-21T15:14:49Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.