Leveraging vision-language models for fair facial attribute classification
- URL: http://arxiv.org/abs/2403.10624v2
- Date: Tue, 17 Sep 2024 02:02:16 GMT
- Title: Leveraging vision-language models for fair facial attribute classification
- Authors: Miao Zhang, Rumi Chunara,
- Abstract summary: General-purpose vision-language model (VLM) is a rich knowledge source for common sensitive attributes.
We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution.
Experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines.
- Score: 19.93324644519412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performance disparities of image recognition across different demographic populations are known to exist in deep learning-based models, but previous work has largely addressed such fairness problems assuming knowledge of sensitive attribute labels. To overcome this reliance, previous strategies have involved separate learning structures to expose and adjust for disparities. In this work, we explore a new paradigm that does not require sensitive attribute labels, and evades the need for extra training by leveraging general-purpose vision-language model (VLM), as a rich knowledge source for common sensitive attributes. We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution. We find that VLMs can recognize samples with clear attribute information encoded in image representations, thus capture under-performed samples conflicting with attribute-related bias. We train downstream target classifiers by re-sampling and augmenting under-performed attribute groups. Extensive experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines that tackle with arbitrary bias. The work indicates that vision-language models can extract discriminative sensitive information prompted by language, and be used to promote model fairness.
Related papers
- High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
We propose an innovative approach called High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning (HDAFL)
HDAFL utilizes multiple convolutional kernels to automatically learn discriminative regions highly correlated with attributes in images.
We also introduce a Transformer-based attribute discrimination encoder to enhance the discriminative capability among attributes.
arXiv Detail & Related papers (2024-04-07T13:17:47Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - Achieve Fairness without Demographics for Dermatological Disease
Diagnosis [17.792332189055223]
We propose a method enabling fair predictions for sensitive attributes during the testing phase without using such information during training.
Inspired by prior work highlighting the impact of feature entanglement on fairness, we enhance the model features by capturing the features related to the sensitive and target attributes.
This ensures that the model can only classify based on the features related to the target attribute without relying on features associated with sensitive attributes.
arXiv Detail & Related papers (2024-01-16T02:49:52Z) - Vision-language Assisted Attribute Learning [53.60196963381315]
Attribute labeling at large scale is typically incomplete and partial.
Existing attribute learning methods often treat the missing labels as negative or simply ignore them all during training.
We leverage the available vision-language knowledge to explicitly disclose the missing labels for enhancing model learning.
arXiv Detail & Related papers (2023-12-12T06:45:19Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - Hierarchical Visual Primitive Experts for Compositional Zero-Shot
Learning [52.506434446439776]
Compositional zero-shot learning (CZSL) aims to recognize compositions with prior knowledge of known primitives (attribute and object)
We propose a simple and scalable framework called Composition Transformer (CoT) to address these issues.
Our method achieves SoTA performance on several benchmarks, including MIT-States, C-GQA, and VAW-CZSL.
arXiv Detail & Related papers (2023-08-08T03:24:21Z) - DeAR: Debiasing Vision-Language Models with Additive Residuals [5.672132510411465]
Large pre-trained vision-language models (VLMs) provide rich, adaptable image and text representations.
These models suffer from societal biases owing to the skewed distribution of various identity groups in the training data.
We present DeAR, a novel debiasing method that learns additive residual image representations to offset the original representations.
arXiv Detail & Related papers (2023-03-18T14:57:43Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
We propose a semi-supervised fair representation learning approach based on adversarial variational autoencoder.
We use a bias-aware model to capture inherent bias information on sensitive attribute.
We also use a bias-free model to learn debiased fair representations by using adversarial learning to remove bias information from them.
arXiv Detail & Related papers (2022-04-01T15:57:47Z) - Fairness-Aware Learning with Prejudice Free Representations [2.398608007786179]
We propose a novel algorithm that can effectively identify and treat latent discriminating features.
The approach helps to collect discrimination-free features that would improve the model performance.
arXiv Detail & Related papers (2020-02-26T10:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.