Verbalized Representation Learning for Interpretable Few-Shot Generalization
- URL: http://arxiv.org/abs/2411.18651v1
- Date: Wed, 27 Nov 2024 01:55:08 GMT
- Title: Verbalized Representation Learning for Interpretable Few-Shot Generalization
- Authors: Cheng-Fu Yang, Da Yin, Wenbo Hu, Nanyun Peng, Bolei Zhou, Kai-Wei Chang,
- Abstract summary: Verbalized Representation Learning (VRL) is a novel approach for automatically extracting human-interpretable features for object recognition.
Our method captures inter-class differences and intra-class commonalities in the form of natural language.
VRL achieves a 24% absolute improvement over prior state-of-the-art methods.
- Score: 130.8173035901391
- License:
- Abstract: Humans recognize objects after observing only a few examples, a remarkable capability enabled by their inherent language understanding of the real-world environment. Developing verbalized and interpretable representation can significantly improve model generalization in low-data settings. In this work, we propose Verbalized Representation Learning (VRL), a novel approach for automatically extracting human-interpretable features for object recognition using few-shot data. Our method uniquely captures inter-class differences and intra-class commonalities in the form of natural language by employing a Vision-Language Model (VLM) to identify key discriminative features between different classes and shared characteristics within the same class. These verbalized features are then mapped to numeric vectors through the VLM. The resulting feature vectors can be further utilized to train and infer with downstream classifiers. Experimental results show that, at the same model scale, VRL achieves a 24% absolute improvement over prior state-of-the-art methods while using 95% less data and a smaller mode. Furthermore, compared to human-labeled attributes, the features learned by VRL exhibit a 20% absolute gain when used for downstream classification tasks. Code is available at: https://github.com/joeyy5588/VRL/tree/main.
Related papers
- Evolving Interpretable Visual Classifiers with Large Language Models [34.4903887876357]
Multimodal pre-trained models, such as CLIP, are popular for zero-shot classification due to their open-vocabulary flexibility and high performance.
vision-language models, which compute similarity scores between images and class labels, are largely black-box, with limited interpretability, risk for bias, and inability to discover new visual concepts not written down.
We present a novel method that discovers interpretable yet discriminative sets of attributes for visual recognition.
arXiv Detail & Related papers (2024-04-15T17:09:53Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
General-purpose vision-language model (VLM) is a rich knowledge source for common sensitive attributes.
We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution.
Experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines.
arXiv Detail & Related papers (2024-03-15T18:37:15Z) - Text Descriptions are Compressive and Invariant Representations for
Visual Learning [63.3464863723631]
We show that an alternative approach, in line with humans' understanding of multiple visual features per class, can provide compelling performance in the robust few-shot learning setting.
In particular, we introduce a novel method, textit SLR-AVD (Sparse Logistic Regression using Augmented Visual Descriptors).
This method first automatically generates multiple visual descriptions of each class via a large language model (LLM), then uses a VLM to translate these descriptions to a set of visual feature embeddings of each image, and finally uses sparse logistic regression to select a relevant subset of these features to classify
arXiv Detail & Related papers (2023-07-10T03:06:45Z) - Enabling Classifiers to Make Judgements Explicitly Aligned with Human
Values [73.82043713141142]
Many NLP classification tasks, such as sexism/racism detection or toxicity detection, are based on human values.
We introduce a framework for value-aligned classification that performs prediction based on explicitly written human values in the command.
arXiv Detail & Related papers (2022-10-14T09:10:49Z) - Improving VAE-based Representation Learning [26.47244578124654]
We study what properties are required for good representations and how different VAE structure choices could affect the learned properties.
We show that by using a decoder that prefers to learn local features, the remaining global features can be well captured by the latent.
arXiv Detail & Related papers (2022-05-28T23:00:18Z) - Rich Semantics Improve Few-shot Learning [49.11659525563236]
We show that by using 'class-level' language descriptions, that can be acquired with minimal annotation cost, we can improve the few-shot learning performance.
We develop a Transformer based forward and backward encoding mechanism to relate visual and semantic tokens.
arXiv Detail & Related papers (2021-04-26T16:48:27Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
This work focuses on few-shot relation classification (FSRC)
We propose an adaptive mixture mechanism to add label words to the representation of the class prototype.
Experiments have been conducted on FewRel under different few-shot (FS) settings.
arXiv Detail & Related papers (2021-01-10T11:25:42Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Learning Universal Representations from Word to Sentence [89.82415322763475]
This work introduces and explores the universal representation learning, i.e., embeddings of different levels of linguistic unit in a uniform vector space.
We present our approach of constructing analogy datasets in terms of words, phrases and sentences.
We empirically verify that well pre-trained Transformer models incorporated with appropriate training settings may effectively yield universal representation.
arXiv Detail & Related papers (2020-09-10T03:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.