論文の概要: SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images
- arxiv url: http://arxiv.org/abs/2403.10662v1
- Date: Fri, 15 Mar 2024 20:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 22:24:30.305596
- Title: SwinMTL: A Shared Architecture for Simultaneous Depth Estimation and Semantic Segmentation from Monocular Camera Images
- Title(参考訳): SwinMTL:単眼カメラ画像からの深度推定とセマンティックセグメンテーションを同時に行う共有アーキテクチャ
- Authors: Pardis Taghavi, Reza Langari, Gaurav Pandey,
- Abstract要約: 本研究では,一台のカメラを用いた同時深度推定とセマンティックセマンティックセグメンテーションが可能な,革新的なマルチタスク学習フレームワークを提案する。
提案手法は共有エンコーダデコーダアーキテクチャに基づいており,計算効率を損なうことなく,深度推定とセマンティックセグメンテーションタスクの精度を向上させるために様々な手法を統合する。
このフレームワークは、屋外のCityscapesデータセットと屋内のNYU Depth V2データセットという2つのデータセットで徹底的に評価されている。
- 参考スコア(独自算出の注目度): 4.269350826756809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research paper presents an innovative multi-task learning framework that allows concurrent depth estimation and semantic segmentation using a single camera. The proposed approach is based on a shared encoder-decoder architecture, which integrates various techniques to improve the accuracy of the depth estimation and semantic segmentation task without compromising computational efficiency. Additionally, the paper incorporates an adversarial training component, employing a Wasserstein GAN framework with a critic network, to refine model's predictions. The framework is thoroughly evaluated on two datasets - the outdoor Cityscapes dataset and the indoor NYU Depth V2 dataset - and it outperforms existing state-of-the-art methods in both segmentation and depth estimation tasks. We also conducted ablation studies to analyze the contributions of different components, including pre-training strategies, the inclusion of critics, the use of logarithmic depth scaling, and advanced image augmentations, to provide a better understanding of the proposed framework. The accompanying source code is accessible at \url{https://github.com/PardisTaghavi/SwinMTL}.
- Abstract(参考訳): 本研究では,一台のカメラを用いた同時深度推定とセマンティックセマンティックセグメンテーションが可能な,革新的なマルチタスク学習フレームワークを提案する。
提案手法は共有エンコーダデコーダアーキテクチャに基づいており,計算効率を損なうことなく,深度推定とセマンティックセグメンテーションタスクの精度を向上させるために様々な手法を統合する。
さらに、モデルの予測を洗練させるために、Wasserstein GANフレームワークと批判ネットワークを併用した対角的トレーニングコンポーネントを組み込んだ。
このフレームワークは、屋外のCityscapesデータセットと屋内のNYU Depth V2データセットという2つのデータセットで徹底的に評価されている。
我々はまた、事前学習戦略、批評家の参加、対数深度スケーリングの使用、高度な画像拡張など、様々なコンポーネントの貢献を分析するためのアブレーション研究を行い、提案フレームワークをより深く理解した。
付属するソースコードは \url{https://github.com/PardisTaghavi/SwinMTL} で参照できる。
関連論文リスト
- Learning to Adapt CLIP for Few-Shot Monocular Depth Estimation [31.34615135846137]
単眼深度推定に視覚言語モデルを適用することを学習する,数発のショットベース手法を提案する。
具体的には、異なるシーンに異なる深度ビンを割り当て、推論中にモデルによって選択できる。
トレーニング用シーンあたりのイメージが1つしかないため、NYU V2とKITTIデータセットによる大規模な実験結果から、我々の手法が従来の最先端の手法を最大10.6%上回っていることが示された。
論文 参考訳(メタデータ) (2023-11-02T06:56:50Z) - Towards Deeply Unified Depth-aware Panoptic Segmentation with
Bi-directional Guidance Learning [63.63516124646916]
深度認識型パノプティックセグメンテーションのためのフレームワークを提案する。
本稿では,クロスタスク機能学習を容易にする双方向指導学習手法を提案する。
本手法は,Cityscapes-DVPS と SemKITTI-DVPS の両データセットを用いた深度認識型パノプティックセグメンテーションのための新しい手法である。
論文 参考訳(メタデータ) (2023-07-27T11:28:33Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
我々は,意味的セグメンテーションと深さ推定という2つの密なタスクのMTL問題に取り組み,クロスチャネル注意モジュール(CCAM)と呼ばれる新しいアテンションモジュールを提案する。
次に,AffineMixと呼ばれる予測深度を用いた意味分節タスクのための新しいデータ拡張と,ColorAugと呼ばれる予測セマンティクスを用いた単純な深度増分を定式化する。
最後に,提案手法の性能向上をCityscapesデータセットで検証し,深度と意味に基づく半教師付きジョイントモデルにおける最先端結果の実現を支援する。
論文 参考訳(メタデータ) (2022-06-21T17:40:55Z) - Context-based Deep Learning Architecture with Optimal Integration Layer
for Image Parsing [0.0]
提案した3層コンテキストベースディープアーキテクチャは、コンテキストを視覚情報と明示的に統合することができる。
ベンチマークデータセットで評価した場合の実験結果は有望である。
論文 参考訳(メタデータ) (2022-04-13T07:35:39Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
セマンティックセグメンテーションのためのドメイン適応は、ソースとターゲットドメイン間の分散シフトの存在下でモデルのパフォーマンスを向上させることを目的とする。
ドメイン間のギャップを埋めるために、両ドメインで利用可能な自己教師付き深さ推定からのガイダンスを活用します。
提案手法のベンチマークタスクSYNTHIA-to-CityscapesとGTA-to-Cityscapesの有効性を実証する。
論文 参考訳(メタデータ) (2021-04-28T07:47:36Z) - SOSD-Net: Joint Semantic Object Segmentation and Depth Estimation from
Monocular images [94.36401543589523]
これら2つのタスクの幾何学的関係を利用するための意味的対象性の概念を紹介します。
次に, 対象性仮定に基づくセマンティックオブジェクト・深さ推定ネットワーク(SOSD-Net)を提案する。
私たちの知識を最大限に活用するために、SOSD-Netは同時単眼深度推定とセマンティックセグメンテーションのためのジオメトリ制約を利用する最初のネットワークです。
論文 参考訳(メタデータ) (2021-01-19T02:41:03Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
ラベルなし画像列からの自己教師付き単眼深度推定により強化された半教師付きセマンティックセマンティックセマンティックセマンティクスのフレームワークを提案する。
提案されたモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2020-12-19T21:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。